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The problem

Given sequential access to finite copies of an identical, unknown

quantum system, what is the optimal approach to extract work from

these systems and charge a battery?



General setup

N copies of unknown quantum state |ψ⟩.
Charging protocol for single copy.

Battery system.

Measurement feedback.



Main result

Lack of knowledge of state results in suboptimal extraction of work,

leading to dissipation.

Simple approach: state tomography+extraction, O(
√
N) cumulative

dissipation

Our approach shows how to achieve O(logN)
cumulative dissipation.
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Extracting work from knowledge

consider a source producing qubits in an unknown pure state ψ

want to learn ψ, but also extract work using partial information

expecting the state is ψ̂, we engineer an interaction that raises a

battery system with probability |⟨ψ|ψ̂⟩|2

binary reward (charge or not):

rt =

1 w.p. |⟨ψ|ψ̂⟩|2

0 w.p. 1− |⟨ψ|ψ̂⟩|2



Jaynes-Cummings battery

Battery system described by HB = ωa†a

For k = 1, 2, ..., N :

1 Receive unknown |ψ⟩, make a guess |ψk⟩, battery state known |nk⟩.
2 Expose |ψ⟩ to a field that induces a Hamiltonian HA = ω |ψk⟩⟨ψk|.
3 The interaction between the battery and the particle is described by

an interaction Hamiltonian

HI =
Ω

2
(a⊗ |ψk⟩⟨ψ⊥

k |+ a† ⊗ |ψ⊥
k ⟩⟨ψk|), (1)

that we turn on for a time tk = πΩ−1(nk + 1)−
1
2 .

4 Measure the energy of the battery in its energy eigenbasis and

update the energy nk+1.



Work dissipation

The extracted work is defined as ∆Wk = ω(nk+1 − nk).

The expected extracted work is given by

E[∆Wk] ≤ 2ω(|⟨ψk|ψ⟩|2

The dissipation in this round is

W jc,k
diss = max

|ψk⟩
E[∆Wk]− E[∆Wk] ≤ 2ω(1− |⟨ψk|ψ⟩|2).

Goal

Minimize the cumulative dissipation over N rounds

W jc
diss(N) =

N∑
k=1

W jc,k
diss ≤ 2ω

N∑
k=1

(1− |⟨ψk|ψ⟩|2).



Quantum state tomography under minimal regret

At each round k ∈ {1, 2, ..., N}:
Learner receives unknown |ψ⟩ (fixed, same each round).

Learner uses policy πt, chooses probe state |ψk⟩ (adaptively) and performs single

copy measurement on |ψ⟩ on the direction of |ψk⟩.
Learner receives reward sampled according to Born’s rule

rk =

1 w.p. |⟨ψ|ψt⟩|2

0 w.p. 1− |⟨ψ|ψk⟩|2

Oracle
|ψ⟩

|ψk⟩

Goal: maximize
∑t

s=1 rs

πk (|ψk−1⟩, rk−1, ...)

rk ∈ {0, 1}



Quantum state tomography under minimal regret

We want to minimize

Regret(T ) =
T∑
t=1

1− ⟨ψ|Πt|ψ⟩

Tomography: Obtain accurate estimates of |ψ⟩ such that

1− ⟨ψ|Πt|ψ⟩ is small.

Reinforcement learning: Finding a balance between

exploration-exploitation:

▶ Exploration: selecting Πt that give enough information to estimate

|ψ⟩.
▶ Exploitation: selecting Πt close to |ψ⟩ such that minimizes regret.



Exploration-Exploitation

Many real-life problems can be formulated as an exploration

exploitation dilemma.

Movie recommendation, web advertisement, etc.

Fundamental problem in reinforcement learning.

Formalized in the multi-armed bandit framework.



Extracting work after learning

The simplest strategy is

First αN (0 ≤ α ≤ 1) copies for learning |ψ⟩ and get estimate |ψ̂⟩

Last (1− α)N copies fix |ψk⟩ = |ψ̂⟩.

This protocol achieves

W jc
diss(N) = O

(
ωαN + ω(1− α)(1− E[⟨ψ̂|ψ⟩|2]N

)
Optimal state tomography achieves

1− E[⟨ψ̂|ψ⟩|2 ∼ 1

αN

Optimizing over α we get

W jc
diss(N) = O(ω

√
N)



Can we improve W jc
diss(N) = O(ω

√
N) ?



Main result

Theorem 1

There exists a protocol that achieves with probability at least 1− δ

W jc
diss(N) = O(ω log(N) log(N/δ)).

Proof is constructive: we design and analyse the protocol.

Almost fully adaptive: uses T/ log(T ) rounds of adaptation.



Extracting work while learning

Our protocol is built using:

Optimisitc principle:

▶ We construct confidence region Ct around |ψ⟩ and update Πt ∈ Ct.
▶ Our particular update allows to control the exploration-exploitation at

any t ∈ [T ].

Median of means weighted online least squares estimator

(MoMWLSE):

▶ Ct is built around an online least-squares estimator.

▶ We use weighted version of LSE to put more weight on measurements

with low variance outcomes Quantum Part!.

▶ The weighted version introduces unbounded random variables ⇒
need median of means version (different from classical shadows).



Extracting work while learning

Π
+ k

Π−
k

Ct

Π̂k

Π = |ψ⟩⟨ψ|

Select measurements Π±
t along the directions of maximal uncertainty of

confidence region.



Median of Means

For each action Π±
s we perform l ∼ log(N) independent

measurements and construct the following j ∈ [l] estimators

θ̃wk,j = V −1
k

k∑
s=1

1

σ̂2s
(a+s,ir

+
s,i,j + a−s,ir

−
s,i,j)

Vk = Vk−1 +
1

σ̂2k

(
a+k,i(a

+
k,i)

T + a−k,i(a
−
k,i)

T
)

a
± bloch vectors.

The median of means is defined as ( different from classical shadows )

θ̃wMoM
k := θ̃wk,l∗ where k∗ = argmin

j∈[l]
yj ,

where

yj = median{∥θ̃wt,j − θ̃wt,i∥Vt : i ∈ [l]/j} for j ∈ [l].



Confidence region

The MoM LSE θ̃wMoM
t defines a confidence region

Pr (θ ∈ Cs,∀s ∈ [k]) ≥ 1− δ δ ∈ (0, 1)

Ck = {θ′ ∈ Rd : ∥θ′ − θ̃k∥2Vk ≤ poly(d) log(1/δ)},

if σ̂2k overestimates the variance of rs i.e

Var(rs) = |⟨ψ|ψs⟩|2
(
1− |⟨ψ|ψs⟩|2

)
≤ σ̂2s .

It suffices to choose σ̂2s ∼ 1/λmin(Vs−1)



Extracting work with thermal reservoir

Unknown state |ψ⟩ in a degenerate Hamiltonian HA = w1/2

Battery system described by HB =
∫
µ |µ⟩⟨µ| dµ

Tunable thermal reservoir HR(ν) = ν |1⟩⟨1|, defined by a freely-chosen

energy gap ν

For k = 1, 2, ..., N :

1 Receive unknown |ψ⟩, make a guess ρk, battery state known |µk⟩.
2 Apply unitary (depends on ρk) to rotate |ψ⟩ to energy eigenstate of

HA.

3 a series of SWAP operation with tailored reservoir state, energetic

changes stored to battery system.

4 Measure the energy of the battery in its energy eigenbasis, obtain

µk+1



Dissipation with thermal reservoir

The extracted work is defined as ∆Wk = (µk+1 − µk).

The expected extracted work is given by

E[∆Wk] = β−1 [D (ψ∥1/2)− D(ψ||ρk)]

The dissipation in this round is

W sc,k
diss = max

ρk
E[∆Wk]− E[∆Wk] = β−1D(ψ||ρk).

Theorem 2

There exists protocol that achieves, with probability at least 1− δ

W sc
diss(N) = O

(
β−1 log2(N) log

(
N

δ

))
. (2)



Conclusions

We study cumulative dissipation with finite copies.

We link the problem to the exploration-exploitation dilemma.

We introduce a protocol that both learns and charges optimally a

battery.

Can we apply similar ideas to the extraction of other resources in the

finite copy regime?



The talk is based on:

with Ruo Cheng Huang, Yanglin Hu, Marco Tomamichel and Mile

Gu: Quantum state-agnostic work extraction (almost) without

dissipation (soon arXiv).

with Mikhail Terekhov and Marco Tomamichel: Learning pure

quantum states (almost) without regret, arXiv: 2406.18370 (algorithm)


