

Super-activating quantum memory by entanglementbreaking channels

Gelo Noel M. Tabia Chung-Yun Hsieh

arXiv:2410.13499

Quantum Resources 2025 (Jeju, Korea)

Motivation

Are entanglement-breaking (EB) channels useless for maintaining entanglement?

Motivation

Are entanglement-breaking (EB) channels useless for maintaining entanglement?

EB channels

Holevo form: measure-and-prepare channel

$$\mathcal{N}(\rho) = \sum_{k} \sigma_k \operatorname{tr}(F_k \rho)$$

EB channels

Holevo form: measure-and-prepare channel

$$\mathcal{N}(\rho) = \sum_{k} \sigma_k \operatorname{tr}(F_k \rho)$$

Choi state
$$\mathcal{J}_{AB}^{(\mathcal{N})}$$
 is separable
 $\mathcal{J}_{AB}^{(\mathcal{N})} = \mathrm{id}_A \otimes \mathcal{N}_{A \to B}(\Phi_{AA})$

A channel is a quantum memory resource if it is non-entanglement-breaking

Main result

There exists compatible EB channels such that any broadcasting realization must generate entanglement.

$$\mathcal{N}_{A \to B}$$

$$\mathcal{N}_{A \to C}$$

Main result

There exists compatible EB channels such that any broadcasting realization must generate entanglement.

Main result

There exists compatible EB channels such that any broadcasting realization must generate entanglement.

Entanglement transitivity

For all ρ_{ABC} with marginals $\rho_{AB} = \sigma_{AB}$ and $\rho_{AC} = \tilde{\sigma}_{AC}$, marginal ρ_{BC} is entangled.

Entanglement transitivity

For all ρ_{ABC} with marginals $\rho_{AB} = \sigma_{AB}$ and $\rho_{AC} = \tilde{\sigma}_{AC}$, marginal ρ_{BC} is entangled.

Example: W-state

$$\sigma_{AB} = \sigma_{AC} = \frac{2}{3} |\Psi^+\rangle \langle \Psi^+| + \frac{1}{3} |00\rangle \langle 00|$$
$$\Rightarrow |W\rangle = \frac{1}{\sqrt{3}} (|100\rangle + |010\rangle + |001\rangle)$$

Certifying transitivity

When $\lambda^* < 0$, then ρ_{BC} is always entangled

$$\max_{\rho_{ABC}} \lambda =: \lambda^{*}$$

s.t. $\rho_{ABC} \ge 0$
 $\rho_{AB} = \sigma_{AB}$
 $\rho_{AC} = \tilde{\sigma}_{AC}$
 $\rho_{BC}^{T_{B}} \ge \lambda \mathbb{I}$

Only separable marginals

A set of separable marginal states may also exhibit (meta)transitivity

Only separable marginals

A set of separable marginal states may also exhibit (meta)transitivity

Only separable marginals

A set of separable marginal states may also exhibit (meta)transitivity

A specific example

$$\begin{split} |\psi_1\rangle_{ABC} &= \sqrt{\frac{3}{20}} (|000\rangle + |111\rangle)_{ABC} + \sqrt{\frac{5}{20}} (|001\rangle + |110\rangle)_{ABC} \\ &+ \sqrt{\frac{2}{20}} (|010\rangle + |101\rangle)_{ABC}; \\ |\psi_2\rangle_{ABC} &= \sqrt{\frac{5+\sqrt{15}}{40}} (|000\rangle + |001\rangle - |110\rangle - |111\rangle)_{ABC} \\ &+ \sqrt{\frac{5-\sqrt{15}}{40}} (|010\rangle + |011\rangle - |100\rangle - |101\rangle)_{ABC}. \end{split}$$

The reduced states ρ_{AB} , ρ_{AC} of $\rho_{ABC} = \frac{1}{2}(|\psi_1\rangle\langle\psi_1| + |\psi_2\rangle\langle\psi_2|)$ have $\rho_A = \frac{1}{2}\mathbb{I}_2$ and exhibit transitivity in *BC*

Broadcasting channel

When $\rho_A = \frac{1}{d} \mathbb{I}_d$, global state is Choi state of a broadcasting channel

Broadcast compatibility

Pair $\mathcal{N}_{A \to B}$, $\widetilde{\mathcal{N}}_{A \to C}$ are broadcast-compatible if there is $\mathcal{G}_{A \to BC}$ such that

$$\operatorname{tr}_{C} \circ \mathcal{G}_{A \to BC} = \mathcal{N}_{A \to B},$$

$$\operatorname{tr}_{B} \circ \mathcal{G}_{A \to BC} = \widetilde{\mathcal{N}}_{A \to C}.$$

Broadcasting realizations $\mathcal{G}_{A \rightarrow BC}$ are not generally unique

Generates entanglement

For EB channels $\mathcal{E}_{A \to B}$, $\tilde{\mathcal{E}}_{A \to C}$ with transitivity, $\mathcal{G}_{A \to BC}(\frac{1}{2}\mathbb{I}_2)$ is always entangled for all $\mathcal{G}_{A \to BC}$

Superactivation of QM

Beyond three qubits

Four-qubit state with $\rho_A = \frac{1}{2}I_2$ and *AB*, *AC*, *CD* exhibit meta-transitivity in *AD*

Beyond three qubits

- Four-qubit state with $\rho_A = \frac{1}{2}\mathbb{I}_2$ and *AB*, *AC*, *CD* exhibit meta-transitivity in *AD*
- With many copies of $\mathcal{G}_{A \rightarrow BCD}$, verify correct reduced state in CD

Beyond three qubits

- Four-qubit state with $\rho_A = \frac{1}{2}\mathbb{I}_2$ and *AB*, *AC*, *CD* exhibit meta-transitivity in *AD*
- With many copies of $\mathcal{G}_{A \rightarrow BCD}$, verify correct reduced state in CD
- If success: $tr_{BC} \circ \mathcal{G}_{A \rightarrow BCD} = \mathcal{N}_{A \rightarrow D}$ is non-EB

Using compatibility and EB property, we can super-activate quantum memory.

- Using compatibility and EB property, we can super-activate quantum memory.
- Applied meta-transitivity of states to superactivation of channels

- Using compatibility and EB property, we can super-activate quantum memory.
- Applied meta-transitivity of states to superactivation of channels

Future directions

Compatibility of resource-breaking channels can be resource-generating

- Using compatibility and EB property, we can super-activate quantum memory.
- Applied meta-transitivity of states to superactivation of channels

Future directions

Compatibility of resource-breaking channels can be resource-generating

Other applications of meta-transitivity

Generic pure input

$$\mathcal{G}_{A\to BC}(\Psi_{z,\phi}) =: \eta_{BC}$$

Broadcast channel $\mathcal{G}_{A \to BC}$ generates entanglement in BC for random $|\psi_{z,\phi}\rangle$

 $|\psi_{z,\phi}\rangle = \cos \pi z |0\rangle + e^{i\phi} \sin \pi z |1\rangle$