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1. What is a quantum state over time (QSOT)?



Symmetry of and
in probabilistic theories?



In classical theories...



Positions of events X and Y
in spacetime?

P(X,Y)

@, Doesn’t matter! I

Space-like? Time-like?




Their correlation
is still described

with P(X,Y)




What about in quantum theory?



Pxy
A&AG_' ‘ (Multipartite)

quantum states

Space-like

o

Time-like

oy = P(px)

Quantum channels

v




Is sensitivity to spatiotemporal structure
an inherent property of quantum theory?



Is sensitivity to spatiotemporal structure
an inherent property of quantum theory?



Is sensitivity to spatio structure
an inherent property of quantum theory?



Is sensitivity to spatio structure
an inherent property of quantum theory?
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PHYSICAL REVIEW A

covering atomic, molecular, and optical physics and quantum information

Towards a formulation of quantum theory as a causally neutral
theory of Bayesian inference

M. S. Leifer and Robert W. Spekkens
Phys. Rev. A 88, 052130 — Published 27 November 2013




Can we construct
quantum state over time?

(4, Ppja) =y Dppp™* py

“Quantum state over time
function”




SCIENTIFIC REPQRTS

‘Quantum correlations which imply
“causation

Joseph F. Fitzsimons'?, Jonathan A. Jones? & Vlatko Vedral?>*




Dpia * P4y > 0



Dpia*pa 20
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Can a quantum state over time resemble a

quantum state at a single time?

Dominic Horsman I, Chris Heunen, Matthew F. Pusey, Jonathan Barrett and
Robert W. Spekkens
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(a) Hermiticity

(b) Preservation of probabilistic mixtures
(c) Preservation of classical limit

(d) Preservation of marginal states

(e) Compositionality



ixtures

(c) Pre_ Actually, there is one!
(d) Pr
(e) Co

S



It turned out that the criteria
were translated into too strong
mathematical conditions
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fA,8%:= 3 (AB+BA)

/

1
Dpia*pp Pa = E{PA 02y IB»D[(DB|A]}
where D[CI)B|A] =idy & CDB|A’(FAA’)

Jamiotkowski isomorphism



1
Dpia*Fp Pa = E{PA X I, D[CDB|A]}

where D[CI)BlA] — ldA ®

Ve
6 [/ )



p ﬂ ﬂp
KX X

1
Dpia*Fp Pa = ED[(DBM]}

where D[CDB|A] =idy ® (DB|A’ (Faa’)

AI



1
Dpia*Fp Pa = E{PA 02y IB»D[(DB|A]}
where D[CI>B|A] =idy @ (DB|A’(FAA’)

Ena = 2 P ﬂ T ﬂp
IFCA ST AN

[
EB\A PA (This closed form is known to be equivalent to the pseudo-density
operator (PDO) when limited to multi-qubit systems)
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From Time-Reversal Symmetry to Quantum Bayes’ Rules

Arthur J. Parzygnat and James Fullwood l
PRX Quantum 4, 020334 — Published 2 June 2023

TABLEII. The many state-over-time functions appearing in this work, along with their formulas, properties satisfied, and associated Bayes maps. The axioms are Hermiticity
(P1), block-positivity (P2), positivity (P3), state linearity (P4), process linearity (PS), the classical limit (P7), and associativity A (bilinearity has been removed from the table
to avoid redundancy). The * for Ohya’s compound state over time is because the classical limit is satisfied for density matrices with no repeating eigenvalues. Note that we do
not fully define Ohya’s compound state over time for arbitrary CPTP maps between multimatrix algebras (this will be addressed in future work, along with additional examples
of state-over-time functions). The question mark represents the fact that we have not yet determined whether the given axiom is satisfied.

Name (page ref.) State over time £ x p P1 P2 P3 P4 P5 P7 A Bayes map &}
Uncorrelated (7) p®E(P) v v v X v X X Any CPTP such that £5(E(p)) = p
Ohya compound (7) Y o raPe ®E ( trgg"a)) v v v X v * ? Not computed here
Leifer-Spekkens (7) (VP ®18)ZIE](/P @ 15) v v X X v v X Petzmap Z,e = Ad,12 0 £* 0 Adg,)-112
t-rotated (8) (P> R 1) Z2[E](p*T @ 15) v v X X v v X Rotated Petz map Ad,,—i 0 #,.& 0 Adg
STH (8) (Ubp' 2 @ 18) Z[E) (02U, ® 15) v v X X v v X Adyi 0 Bpe 0 Adug,
Symmetric bloom (11) %{p@ 15,@[5]} v X X v v v v lwi) (wy| = (qk+q,)_1{p,5*(|wk)(w;|)}
Right bloom (13) (p ® 1) Z[E] (e.g., two-state) X X X v v v v B> pE*(E(p)'B) (e.g., weak values)
X X X v v v v B EX(BE(p)~")p

Left bloom (15) D[E](p ® 1) (e.g., correlator)

festoreq) 1Y
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Quantum state over time (QSOT) function
A function x:C(4,B) X §(4) » A ® B that maps
(®gja, pa) 1o Ppia * pa is @ QSOT function if

Trg®pia * pa = Pa
Try®@pia * pa = P(P)5



Axiom (E): Completeness

For any quantum state over spacetime p g with two
arbitrary regions A and F in spacetime, and any quan-
tum channel Ep| 4, the action of QSOT function on a
subsystem £p| 4 * par can be defined and has the fol-
lowing properties: For any completely positive trace

Axiom (T): Time reversal symmetry

A state over time corresponding to the trivial evolution
should be symmetric under the time reversal transfor-
mation, i.e. FAB(idB|A * PA)FAB = idB|A * PAS for

non-increasing opera (-

Ii|Epja*p

be Hermitian.

r

Axiom (H) (Hermiticity) For any quantum channel
and state £p| 4, pa, the state over time Ep|4 % pa must | ; /

J

notes the swap gate be-

‘o

Axiom (P): Composi “"—————

A QSOT function should Bgcompatible with composi-
tion of quantum channels. Inggher words, for any two
quantum channels £ 4 and FoWywe have

Trp []:C|B * (Ep)a *PA)] = (Fo *xpa. (5)

\

—_ditionability (informal)
When the input stagg?and the channel are prepared in
an ensemble {\;, #£4,,Ep| 4, }. then the corresponding
QSOT is givegds Epjax (D_; Aima,) = D_; Mi€pa, *
Ta,;, Wherefpia = >, Ep|a,.

-~ memm o mm- ) - v e ——————

—

1
Ep|a*Fp Pa = E{pA X IB»D[gB|A]}



Axiom (QC): Quantum conditionability
For every state p € G(A), there exists a state-rendering P( ) — ) )
function ®, [17,40,41] on ‘5(A) such that x 3Y P( Yl x P(x
Egia * pa = (0, ® idp)(Epa * 14) (13) "state-rendering”

for all £ € €(A, B), where ®, is linear, and for any M € p - ,O A p 29
‘B(A),Iwhenever [p, M] = 0, we have ©,(M) = pM. _ AB BlA A -

(This part requires reduction to classical state rendering
function, which may warrant a separate axiom.)

B——® . 6

EBIA * Lh (@,,@ ﬂvz) [EBIA g J—“A]
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[Submitted on 30 Oct 2024]

Unique multipartite extension of quantum states over time
Seok Hyung Lie, James Fullwood

The quantum state over time formalism provides an extension of the density operator formalism into the time domain, so that quantum
correlations across both space and time may be treated with a common mathematical formalism. While bipartite quantum states over time
have been uniquely characterized from various perspectives, it is not immediately clear how to extend the uniqueness result to multipartite
temporal scenarios, such as those considered in the context of Legget-Garg inequalities. In this Letter, we show that two simple assumptions
uniquely single out a multipartite extension of bipartite quantum states over time, namely, linearity in the initial state and a quantum analog of
conditionability for multipartite probability distributions. As a direct consequence of our uniqueness result we arrive at a canonical multipartite
extension of Kirkwood-Dirac type quasi-probability distributions, and we conclude by showing how our result yields a new characterization of

quantum Markovianity.




N-chains

0-0-0-0

E = (81, 82, ...,gn) € CPTP(Ao,Al, ...,An)
& E;, € CPTP(4y,44,...,A4,) foralli=1,..,n







QSOT function, QSOT product,
spatiotemporal product, start product...
all same

Definition 1 (Quantum state over time). A spatiotem-
poral product (or x-product) is a binary operation that
maps every pair (€, p) € CPTP(Ag,...,A,) x S(Ap) to
an (n + 1)-partite operator € x p on Ay - -+ A,, such that

Tra,[Expl =ExE1(p) and Tra, [Expl=Exp.
Truncations of n-chains

§:= (52353,---,5?1) and EI: (81,52,...,5n_1).



Common question:

We have a for bipartite QSOTs;

Why can’t we just extend it to the multipartite setting?

Exp=E,x(En—1%x (- x(E1%p)))

Well, yeah, you CAN do that.
But the problem is, this is by no means
the unique multipartite extension of x.



There are exponentially many n-chain products that reduces
to the FP product.

E *c P — En *xC,, (gn—l ACr—1 ( o (51 *Ch P)))

1
S*pzi(é'*cerS*ép)

Where € = (Cy,C,, ..., C,) € {L,R}" and C is the opposite of C.
= Uniqueness problem for multipartite QSOT is highly nontrivial!



Which axioms should we assume?
As natural as possible, as few as possible.



1. State-linearity
We want our QSQOT function € x p to be linear in p.
Good : consistency with statistical reasoning
Easily extends to the multipartite setting



2. Conditionability
We want our QSOT function € x p to behave
similarly with

Especially: We want to be able to ‘condition’ on an initial state
P(xg,...,x,) = P(xg) - P(x1,...,Tn|T0)



For QSOT, it amounts to the following assumption.

Definition 2 (Conditionability). A *-product is said to
be conditionable if and only if for every state p € G(Ay),

there exists a linear map ©, : A9 — Ao such that for
every n-chain & € CPTP(A,,...,A,),

Exp=(0,®ida,..a,)(E*14,). (6)



Surprisingly, these two assumptions are enough
to prove the uniqueness of multipartite extension.



Theorem 1 (Unique multi-partite extension of QSOTs).
If a x-product is conditionable and convex-linear in p,
then it satisfies the iterative formula (3) for every (&, p) €
CPTP(AOJ Ce ey An) X G(AD)

Exp=Ey*x(En1x (% (E1xp))) (3)

The Markovian extension of quantum state over time!
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From Time-Reversal Symmetry to Quantum Bayes’ Rules

Arthur J. Parzygnat and James Fullwood
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Prediction
(Quantum channel)

>
CE—

Retrodiction
(Bayes map)

Time






TABLEII. The many state-over-time functions appearing in this work, along with their formulas, properties satisfied, and associated Bayes maps. The axioms are Hermiticity
(P1), block-positivity (P2), positivity (P3), state linearity (P4), process linearity (PS), the classical limit (P7), and associativity A (bilinearity has been removed from the table
to avoid redundancy). The * for Ohya’s compound state over time is because the classical limit is satisfied for density matrices with no repeating eigenvalues. Note that we do
not fully define Ohya’s compound state over time for arbitrary CPTP maps between multimatrix algebras (this will be addressed in future work, along with additional examples
of state-over-time functions). The question mark represents the fact that we have not yet determined whether the given axiom is satisfied.

Name (page ref.) State over time £ x p P1 P2 P3 P4 P5 P7 A Bayes map &}

Uncorrelated (7) p®E(P) v v v X v X X Any CPTP such that £5(E(p)) = p
Ohya compound (7) Y o raPe ®E ( trgg"a)) v v v X v * ? Not computed here
Leifer-Spekkens (7) (VP ®18)ZIE](/P @ 15) v v X X v v X Petzmap Z,e = Ad,12 0 £* 0 Adg,)-112
t-rotated (8) (P> R 1) Z2[E](p*T @ 15) v v X X v v X Rotated Petz map Ad,,—i 0 #,.& 0 Adg
STH (8) (Ubp' 2 ® 18) Z[E](p'2U, ® 15) v v X X v v X Adyi 0 Bpe 0 Adug,
Symmetric bloom (11) %{p@ 15,@[5]} v X X v v v v lwi) (wy| = (qk+q,)_1{p,5*(|wk)(w;|)}
Right bloom (13) (p ® 1) Z[E] (e.g., two-state) X X X v v v v B> pE*(E(p)'B) (e.g., weak values)
Left bloom (15) D[E](p ® 1) (e.g., correlator) X X X v v v v B 5*(B€(p)")p




=

Any CPTP such that £5(£(p)) = p

(which is okay because quantum state in the past

A
need not be positive and Bayesian inference has never a dg(p)—l;’fl
physical process)

2. Linear in prior O Adg(p)i!

(which is crucial for statistical reasoning)

3. Can update certainty (Not necessarily,
(which shouldn't be surprising because we already know | would say)

S(A) = 0 but S(A|B) < 0 is possible)
) (wil) |

B> pE*(E(p)~'B) (e.g., weak values)
B> EX(BE(p))p

NN N X X X




TABLEII. The many state-over-time functions appearing in this work, along with their formulas, properties satisfied, and associated Bayes maps. The axioms are Hermiticity
(P1), block-positivity (P2), positivity (P3), state linearity (P4), process linearity (PS), the classical limit (P7), and associativity A (bilinearity has been removed from the table
to avoid redundancy). The * for Ohya’s compound state over time is because the classical limit is satisfied for density matrices with no repeating eigenvalues. Note that we do
not fully define Ohya’s compound state over time for arbitrary CPTP maps be ult ix algebras (this will be addressed in future work, along with additional examples
of state-over-time functions). The question mark represents the fact that we ed whether the given axiom is satisfied.

Name (page ref.) State over time £ x p 4 P5 P7 A Bayes map &}

Uncorrelated (7) p®E(P) v X X Any CPTP such that £5(E(p)) = p
Ohya compound (7) Y o raPe ®E ( trﬁg"a)) v * ? Not computed here
Leifer-Spekkens (7) (VP ®18)ZIE](/P @ 15) v v X Petz map %, = Ad 12 0 E* 0 Adg ()1
t-rotated (8) (P> R 1) Z2[E](p*T @ 15) v v X Rotated Petz map Ad,—i 0 #,.¢ o Adg
STH (8) (Ubp'2 @ 1) 2[E1(p'?U, ® 15) v v X Adyi 0 Bpe 0 Adug,

Symmetric bloom (11) %{p@ 13,9[5]} v v v |wi ) (wy| +— (qk—i—q,)_'{p,g*(lwk)(wm
Right bloom (13) (p ® 1) Z[E] (e.g., two-state) X X X v v v v B pE*(E(p)~'B) (e.g., weak values)
Left bloom (15) D[E](p ® 1) (e.g., correlator) X X X v v v v B 5*(B€(p)")p




2. Non-causal temporal correlation as a resource

[S. H. Lie and H. Kwon, private communication (2025)]



Q : What is a quantum state p?

A1 : An object that encodes
the probability distribution for any POVM {M;}.



%) U

(1) alO)g + Ul 4l1))/V2

1 + Re(Tr[U
D(14)) = + e(2 rlUp])




Q : What is a quantum state p?

A2 : An object that encodes
the interference term Tr[Up] for any unitary U.



It is also true for multipartite states

% e

() ap|0)g + V4 @ Wglth) apl1)r)/V2

D(|4)) = 1+ Re(Tr[Vg Q@ Wgpagl)




Q : What is a quantum process?

A1 : A combination of an initial state p
and a transformation U.



What about quantum processes?

VHUHwWI

(Ul)al0)g + WUVIp)411)g) /Y2

Koy

1 + Re(Tr|WUVpUT))
2

p(|E) =



Q : What is a quantum process?

A2 : An object that encodes the interference term
of the process interferometer!



- Let's look into the interference term Tr|[WUVpU?|.

TrWUVpUT] = Tr [(Va ® We) (pa ® 15)D[Usa]|
= Tr|(Va @ Wp)Up|a * P4l

* The right-bloom naturally arises.



CHEAT SHEET

1
Dpa*Fp P4 = E{PA X I, D[CDB|A]}

Dpia*r Pa = (Pa® Ip) D[CDB|A]
Dpia*L Pa = D[ Ppa| (04D 1)




- This result generalizes to general channels £(p) = Trg|U(p, ® 10)0]z)UT].

WIRQ OW DUV Q@ D|y) ® |0)
Tr, [WTrE[U(Vp ® |0><0|E)U+]]
= Tr[WE[Vp)]
= Tr [(HA R Wp)(Vps & HB)D[gBlA”
= Tr[(VA Q@ Wp)Ep|a *R PA]

« Therefore, you can indeed say that QSOTs are indeed quantum states;
they encode the interference term. (p 5 = Ep4 *r P4)

« But why the right-bloom, not the FP function?



Spacetime black-box interferometry

« This kind of interferometric setting has the property of being spacetime-agnostic.

« You can just give out instructions to local parties to implement it without knowing their
spatiotemporal relation.

| don’t care when and

where they are. They
will measure their

quantum state for me!

~ gﬁw 7
URE

light cone

— P x (relative space)
/ ELSEWHERE 7‘:
here-and-now

N
i ; ' -

S - “PAST $ RS
g Sy — ES T J /

light cone

N

g
[/

N




Spacetime black-box interferometry

« This kind of interferometric setting has the property of being spacetime-agnostic.

« You can just give out instructions to local parties to implement it without knowing their
spatiotemporal relation.

| don’t care when and

where they are. They
will measure their

quantum state for me!

light cone

ELSEWHERE *

P x (relative space)
ELSEWHERE

light cone




Spacetime black-box interferometry

| don’t care when and

where they are. They
will measure their

quantum state for me!

light cone

ELSEWHERE *

P x (relative space)
ELSEWHERE

light cone

« Nevertheless, instructions are executable and if there are multiple executable ways, then
the measurement outcome is consistent results regardless of their spatiotemporal
relation.



Temporal symmetry

«  When we say that a quantum state |¢) at t = t, evolves into Ul|y) t = t,
through a process U, we are making a significant assumption that the past
and the future are fundamentally distinguishable.

 However, who said t; > t,;?

« A guantum state U|y) at t = t;, evolving into |) at t = t, through UT is
also a perfectly fine description of the same dynamics.

« Notice it is different from saying that you cannot distinguish A from B.



Temporal symmetry

« Hence, without reference systems, our prediction of the interference term
cannot prefer one temporal direction over the other.

* |t should be the even mixture of
Tr[(Va ® W) (Upja *, pa)] and Tr{(Vy ® W) (U5 % UpUL)].

¢ NOte that 'UB|A *1r Pg — ule *p UIDU;-

» Hence the interference term takes the form of Tr[(V; & Wg)(Upja *rp pa)]!



Temporal asymmetry

« But IRL we can easily tell past from future easily and access to the right-
bloom.

« How is this possible?



Temporal asymmetry

« But IRL we can easily tell past from future easily and access to the right-
bloom.

« How is this possible?

 Clocks!

* A clock actually has two roles:

(1) It tells us what time it is (time-map)
(2) It tells us into which direction the time flows. (time-compass)



Clocks?

« Recall how clocks work.

« A clock and another system, although they do not really interact,
appear to have SOME correlation.




Clocks?

« But it cannot be captured by the conventional quantum state;
they stay in a product state p, ® o, at all time.



Axioms for retrodiction: achieving time-reversal
symmetry with a prior

Arthur J. Parzygnat and Francesco Buscemi

2023-05-12




Tensoriality is not desirable

we expect retrodiction to satisfy tensoriality, which states

EE&,E ®f@a’,5’ — ‘@mﬁga’:!ﬁ'@g"
« This axiom sounds convincing at first, but in terms of QSQOTs, it amounts to saying

(Ea Q@ Fp) *x(pg @ 0g) = (E4 *py) @ (F * 0p)

« However, the information that A and B were prepared in p, and gz simultaneously and
evolve in parallel is a data worth attention!



Tensoriality is not desirable

« The FP function captures this correlation, i.e., in general,

(E4 ® Fp) *pp (pa @ 0g) # (E4 *pp pa) @ (F *pp 05)



A clock as a resource

« Let's assume that now you append a ‘clock system’ C, that evolves into Cy
sitting next to your dynamics between A and B.

It does nothing; it is initialized in [0);, and just stays there.

* The corresponding QSOT is

(EB|A 03y ich|CA) *x(pa ® |0><O|CA)

Now, what can we use this clock for?



Process interferometry with clock

Un 7 lMlW

« Now we consider the same interferometry, but with the clock included.

+ Consider Vy¢c, =V, ® [1)(0]¢, + VJ X [0X(1]¢,
and Wgc, = Wy ® [0X(1]¢, + V] ® [1)(0]¢, .



Process interferometry with clock

« Then the interference term becomes

Tr[(VACA X WBCB)(gBM X ich|cA ) *pp (Pa & |O><0|CA)]
= Re(Tr|(V4 ® Wp)(Egja *r Pa)])

» By varying V - 'V, one can access the Tr[(Vy ® Wg)(Egja *r pa)]!

« One can now access the temporally asymmetric statistics with the help of a clock.



POVMs over time

« Moreover, for the case of the FP function, the measurement probability of the
interferometry

p— 1 + Re(Tr[(Vy @ Wg)(E *pp p)])
2

allows for the expression (because (€ *p p) is @ Hermitian operator)

p— Tr[(I4p = Re(V & W))(E *pp p)]
2

« Here I,z + Re(V ® W) are always positive operators that sum up to 45 for arbitrary unitary
operators v, and Wg.

« So, they can be interpreted as a POVM element for QSOTs!



Clock-correlation

Physical systems propagating into the same direction in time definitely have correlation.

This cannot be a spatial correlation; it cannot be conventional quantum state over space.
This is also not a causation; neither clock nor you watching it is a cause of the other.

This demonstrates that there exists noncausal temporal correlation, and it is indeed a
resource for telling time.

We couldn’t have captured this correlation with the conventional formalism;
The QSOT formalism is a useful tool for analyzing the clock correlation.

Maybe we can use the framework for constructing a resource theory of dynamical
resources.



Thank you for listening!
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