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MOTIVATION

 Indefinite causal order (ICO) has shown advantages on several tasks.
« Particularly, many applications in quantum communication.

« State discrimination can be seen as a communication scenario.
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« A communication scenario between two parties, a sender (4) and a receiver (B),
consists of the following stages:

1. A encodes characters from an alphabet into an ensemble of quantum states Q = {g;,

pi}i=1,...,n .
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« A communication scenario between two parties, a sender (4) and a receiver (B),
consists of the following stages:

1. A encodes characters from an alphabet into an ensemble of quantum states Q = {q,,
pi}i=1,...,n -
2. A transmits the states to B through a channel .

3. B decodes the information by performing measurements on the received state to guess its
label.
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« Standard MED is a scenario of quantum communication but with some differences:
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2. A transmits the state to B through a noiseless channel.

3. B decodes the information by performing measurements on the received state to guess its
label.
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« Standard MED is a scenario of quantum communication but with some differences:

1. A encodes characters from an alphabet into a pre-agreed and fixed ensemble of states O =

{qir pi}i=1,...,n .
2. A transmits the state to B through a noiseless channel.

3. B decodes the information by performing measurements on the received state to guess its
label.

» The success of the task is given by the guessing probability:
pg = m]\%X Z qitr (szz)
subject to M = {M;} ;- ., being a POVM.
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For a set of non-orthogonal states, perfect guessing cannot be achieved.
Closed form solutions exist only in a limited number of cases.

For two states, we have the Helstrom bound:

l+ lg1p1 — q2p2|l1
2 2

The optimal measurement is not uniqgue and sometimes performing no measurement and

Pg —

always guessing the state with max{q;} is the optimal strategy.
l

For qubit states, it is known that a measurement with at most four non-null elements can
achieve the optimal guessing.

Recently an algorithmic process to find optimal measurements for qubit states has been
derived.

Necessary and sufficient conditions exist:
quz’Mz‘ —qjp; =0, V.
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 |In practice, often noise exists between A and B. The channel v effectively changes the

ensemble as
N : Q= {qi,pi}?zl — Q(N) — {QiaN(pi)}znzl'

. Since QW) js different than , the original optimal measurement is no longer optimal in
general.

* Two options:

. Quantum state tomography to find N (p;)
ii. Channel tomography to identify V.
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* The depolarization channel
D,(p) =1 —pp+pl/d, pel0,1],
is OMP for ensembles:
L Qo =A{1/n, p;j};=1 ., oOfn states with equal a priori probabilities.

i Q;=1{q; pi}i=1, Of two states appearing with arbitrary a priori probabilities.
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Su(E,F) =) Kij(p@w)K];,
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with the Kraus operators
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where the channels C,, C_ are S
Ci(p) = (p5 + p1 +p3 +p3)p + 2p0(P1 X pX + poYpY + p3ZpZ)
qd+ |
C_(p) = 2p1p2Z pZ + 2pap3s X pX + 2p3p1Y pY
q_ Y

and the probabilities are
q- = 2(p1p2 + p2p3 +p3p1), g+ =1—q_.
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* |n detail the scenario works as follows:

1. The sender prepares a state p; and sends it to the communication provider.

2. The communication provider implements the quantum switch, measures the ancilla qubit and communicates the
outcome to the receiver.

3. The receiver applies an appropriate measurement I1,,II_ and guesses the label of the received state.
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* There are two scenarios in which the quantum switch can assist:

1. Qand € such that C,,C_ are OMP or the new optimal measurement can be easily inferred. In
such case, the advantage can be twofold:
. Increase in guessing probability.

ii.  Know what optimal measurement to apply without knowledge of the noise parameters.

2. Assume knowledge of V(p;), vj: a scenario of enhancing communication with known noise.

 In both cases, applying the optimal measurements for €, and C_ , we obtain the average

guessing: |

p'® = qipt +q-p, .
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APPLICATIONS OF THE PROTOCOL

An example is the depolarisation channel:
3
Dy(p) = (1 - Zp) p+ 7 (XpX +YpY +2pZ) , p€[0,43].
Its action at the level of the Bloch vector is 7 — (1 —p)r.

For values p € [0,1) itis OMP. For p € (1,%/5], the optimal measurement has changed.
If no information on the value of p, we do not know what measurement to apply.

The action of the quantum switch in this case gives:

1

34t

1

0 1/3 2/3 1 /3
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APPLICATIONS OF THE PROTOCOL

Result 1 For any value of p > 4/5, the discrimination protocol with the quan-
tum switch leads to a higher gquessing probability than can be achieved using the
channel. Interestingly, at p = 1 the depolarisation channel sends all states to
the mazximally mized one, removing any possibility of quessing better than uni-

form, i.e. py; = 1/n, while the quantum switch allows for a correct detection with
a probability of

3+np
P == (1)
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« What about multiple-copies?

Guessing Probabilities
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Result 2 For any finite number m of copies of the state and the channel, there
s a region in the parameter space of the depolarisation channel around the value
p = 1 for which quantum state discrimination with the quantum switch achieves
higher guessing probability than the multiple-copy discrimination scenario.
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* The quantum switch acts as

1 1
S F)p) =Y (Kiyp@w)Kly = 1Y {Ei Fj} p{E:. FiY @w+ 3 Y [E, FlplEi Fj]' © ZwZ.
t,J t,J
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» These effectively give nested expressions of anticommutators and commutators.

» The expressions of the (n + 1)-order superswitch can be efficiently derived from the
expressions of the n-order superswitch through recurrence relations that can be
iterated.
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If £ = F =...="Pzand denote by Cén) and rﬁ") the channels and respective
probabilities of the n-th order superswitch, the channels of the (n 4 1)-order
superswitch are

C(n+1) _ a(Cén), Ci?)) C(n_|_1) _ C(Cén), Céjl))
ss’'+ ng/—:_l) 3 ss' — ng/tl) 5
P = Pr(a@,08N) o = pr(c, M) )

Result 3 Any n-order superswitch can be analytically evaluated by iterating
Eqgs. (1) under the initial conditions C®) = & and r®) = 1.
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If £ = F =...="Pzand denote by C’s(n) and ré”) the channels and respective

probabilities of the n-th order superswitch, the channels of the (n 4 1)-order

superswitch are

Cég/—H) = ’ ss’ ’
’ re ris
Pt = Pr(a(cf, e, Y = e (¢, M) . ()

where v; = {«;, 5i,7i,0:},1 = 1,2, and
a(E,F) = a(vh,V2) = {arae + B1P2 +y172 + 0102, 0182 + frae , a1y2 + Y102, 102 + d1aa },

(&, F) = ¢(U1,72) = {0, B1y2 + 7182, 7162 + d172, 0182 + B1d2} ,

Pr(a(1717772)) =1- Pr(c(ﬁla 772)) )
,U2)) = B1v2 + 71 P2 + 71102 + 6172 + 0182 + B162.

—

Pr(c(v}
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Guessing Probabilities

=== Channel
Quantum switch
Pg 3/4

= Second-order superswitch

= Third-order superswitch

= Fourth-order superswitch

= Fifth-order superswitch

Result 4 There is a region in the parameter space of the depolarisation channel
for which the higher the order of the superswitch, the higher the guessing prob-
ability. Moreover, as a consequence of Results 1 and 2, the guessing probability
in a region including the point p = 1 increases with the order of the superswitch
i comparison to the multiple-copy gquessing probability for any finite number of
copies.
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« | defined the problem of noisy quantum state discrimination.

« | presented a protocol that uses indefinite causal order through the quantum switch and higher order generalisations.
+ We saw that this can help with knowing what optimal measurement to apply but also enhance guessing probability.

« Even though not explicitly mentioned in this talk, these results extend to Pauli channels in any dimension 2:.

« A task for which superswitches have a clear advantage over the quantum switch:

“Probabilistic Channel Distillation via Indefinite Causal Order”: arXiv:250113696

Future research / open problems:

« Can we derive conditions that detect whether the protocol with the superswitches will offer an advantage for a given channel
and ensemble of states?

« What if the channels combined in the superswitches differ?

Thank you!



