
ENHANCING QUANTUM STATE 
DISCRIMINATION WITH 
INDEFINITE CAUSAL ORDER

Quantum Resources 2025, 

Jeju, March 21 2025



OVERVIEW

• Motivation

• Quantum State Discrimination

• Indefinite Causal Order

• Results

• Summary 



MOTIVATION

• Indefinite causal order (ICO) has shown advantages on several tasks.

• Particularly, many applications in quantum communication.

• State discrimination can be seen as a communication scenario.
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consists of the following stages:

1.  𝐴 encodes characters from an alphabet into an ensemble of quantum states Ω = {
}

𝑞! ,
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• Standard MED is a scenario of quantum communication but with some differences:

1.  𝐴 encodes characters from an alphabet into a pre-agreed and fixed ensemble of states Ω =

𝑞! , 𝜌! !"#,…,&	.

2.  𝐴 transmits the state to 𝐵 through a noiseless channel. 

3.  𝐵 decodes the information by performing measurements on the received state to guess its 
label. 

• The success of the task is given by the guessing probability:     

 subject to 𝑀 = {𝑀!} !"#,…,&	being a POVM.

pg = max
M

∑

i

qitr (Miρi)
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• For a set of non-orthogonal states, perfect guessing cannot be achieved.

• Closed form solutions exist only in a limited number of cases. 

• For two states, we have the Helstrom bound:

• The optimal measurement is not unique and sometimes performing no measurement and 

always guessing the state with max
!
{𝑞!} is the optimal strategy.

• For qubit states, it is known that a measurement with at most four non-null elements can 
achieve the optimal guessing. 

• Recently an algorithmic process to find optimal measurements for qubit states has been 
derived.

• Necessary and sufficient conditions exist:

pg =
1

2
+

∥q1ρ1 − q2ρ2∥1
2

∑

i

qiρiMi − qjρj ≥ 0 , ∀j.
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• In practice, often noise exists between 𝐴 and 𝐵.  The channel 𝒩 effectively changes the 
ensemble as

• Since Ω(𝒩) is different than Ω, the original optimal measurement is no longer optimal in 
general.

• Two options: 
i. Quantum state tomography to find 𝒩(𝜌!)

ii. Channel tomography to identify 𝒩.

NOISY MINIMUM-ERROR STATE DISCRIMINATION

N : Ω = {qi, ρi}
n

i=1 → Ω(N ) = {qi,N (ρi)}
n

i=1.
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• When do two channels ℰ and ℱ share an optimal measurement 𝑀?

• The depolarization channel

is OMP for ensembles:

i. Ω" = 1/𝑛, 𝜌! !#$,…,'   of 𝑛 states with equal a priori probabilities.

ii. Ω( = 𝑞!, 𝜌! !#$,(   of two states appearing with arbitrary a priori probabilities.

Dµ(ρ) = (1− µ)ρ+ µ I/d , µ ∈ [0, 1] ,

OPTIMAL MEASUREMENT PRESERVING CHANNELS
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• The quantum switch is a supermap that superposes the ordering of applying two channels ℰ and ℱ. 
Explicitly:

with the Kraus operators

Sω(E ,F) =
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Kij(ρ⊗ ω)K†
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Kij = EiFj ⊗ |0⟩⟨0|C + FjEi ⊗ |1⟩⟨1|C .
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S|+⟩⟨+|(E , E)(ρ) =
1

4

∑

i,j

{Ei, Ej} ρ {Ei, Ej}
† ⊗ |+⟩⟨+|+

1

4

∑

i,j

[Ei, Ej ] ρ [Ei, Ej ]
† ⊗ |−⟩⟨−| ,
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• The quantum switch is a supermap that superposes the ordering of applying two channels ℰ and ℱ. 
Explicitly:

with the Kraus operators

• In the special case with ℰ = ℱ = 𝑝"𝜌 + 𝑝$𝑋𝜌𝑋 + 𝑝(𝑌𝜌𝑌 + 𝑝)𝑍𝜌𝑍 and by choosing 𝜔 = | ⟩+ ⟨ |+ 	we find

where the channels 𝐶', 𝐶( are

and the probabilities are

Sω(E ,F) =
∑

i,j

Kij(ρ⊗ ω)K†
ij ,

Kij = EiFj ⊗ |0⟩⟨0|C + FjEi ⊗ |1⟩⟨1|C .
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THE QUANTUM SWITCH

C+(ρ) =
(p20 + p21 + p22 + p23)ρ+ 2p0(p1XρX + p2Y ρY + p3ZρZ)

q+
,

C
−
(ρ) =

2p1p2ZρZ + 2p2p3XρX + 2p3p1Y ρY

q
−

,

q
−
= 2(p1p2 + p2p3 + p3p1) , q+ = 1− q

−
.



• A pictorial representation of the protocol is:
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• In detail the scenario works as follows:
1. The sender prepares a state 𝜌! and sends it to the communication provider.
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• There are two scenarios in which the quantum switch can assist:

1. Ω and ℰ such that 𝐶', 𝐶( are OMP or the new optimal measurement can be easily inferred.	In 
such case, the advantage can be twofold: 

i. Increase in guessing probability. 

ii. Know what optimal measurement to apply without knowledge of the noise parameters. 

2. Assume knowledge of 𝒩 𝜌) , ∀𝑗: a scenario of enhancing communication with known noise. 

• In both cases, applying the optimal measurements for 𝐶+ and 𝐶, , we obtain the average 
guessing:

p
(S)
g = q+p

+
g + q−p

−
g .
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• An example is the depolarisation channel:

Dp(ρ) =
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4
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p

4
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(
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4
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p
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C
−
(ρ) = D4/3 .

q
−
=

3p2

8
, q+ = 1−

3p2

8
.
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Result 1 For any value of p > 4/5, the discrimination protocol with the quan-

tum switch leads to a higher guessing probability than can be achieved using the

channel. Interestingly, at p = 1 the depolarisation channel sends all states to

the maximally mixed one, removing any possibility of guessing better than uni-

form, i.e. pg = 1/n, while the quantum switch allows for a correct detection with

a probability of

p(S)
g

=
3 + npg

4n
. (1)
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Result 2 For any finite number m of copies of the state and the channel, there

is a region in the parameter space of the depolarisation channel around the value

p = 1 for which quantum state discrimination with the quantum switch achieves

higher guessing probability than the multiple-copy discrimination scenario.
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• The quantum switch acts as

Sω(E ,F)(ρ) =
∑

i,j

(Kijρ⊗ ω)K†
ij =

1

4

∑

i,j

{Ei, Fj} ρ {Ei, Fj}
† ⊗ ω +

1

4

∑

i,j

[Ei, Fj ] ρ [Ei, Fj ]
† ⊗ ZωZ .
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• However, one can envisage a switch of switches, or superswitch, 

⇢j S(2)
!1!2!(E ,F , Ẽ , F̃)(⇢j)

E

F

Ẽ

F̃

!1

!2

!
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• These effectively give nested expressions of anticommutators and commutators.

• The expressions of the (𝑛 + 1)-order superswitch can be efficiently derived from the 
expressions of the 𝑛-order superswitch through recurrence relations that can be 
iterated.
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If E = F = . . . = Pv⃗ and denote by C
(n)
s and r

(n)
s the channels and respective

probabilities of the n-th order superswitch, the channels of the (n + 1)-order
superswitch are

C
(n+1)
ss′+ =

a(C
(n)
s , C

(n)
s′

)

r
(n+1)
ss′+

, C
(n+1)
ss′−

=
c(C

(n)
s , C

(n)
s′

)

r
(n+1)
ss′−

,

r
(n+1)
ss′+ = Pr

(

a(C(n)
s , C

(n)
s′

)
)

, r
(n+1)
ss′−

= Pr
(

c(C(n)
s , C

(n)
s′

)
)

, (1)

Result 3 Any n-order superswitch can be analytically evaluated by iterating

Eqs. (1) under the initial conditions C(0) = E and r(0) = 1.
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If E = F = . . . = Pv⃗ and denote by C
(n)
s and r

(n)
s the channels and respective

probabilities of the n-th order superswitch, the channels of the (n + 1)-order
superswitch are

C
(n+1)
ss′+ =

a(C
(n)
s , C

(n)
s′

)

r
(n+1)
ss′+

, C
(n+1)
ss′−

=
c(C

(n)
s , C

(n)
s′

)

r
(n+1)
ss′−

,

r
(n+1)
ss′+ = Pr

(

a(C(n)
s , C

(n)
s′

)
)

, r
(n+1)
ss′−

= Pr
(

c(C(n)
s , C

(n)
s′

)
)

, (1)

where v⃗i = {αi,βi, γi, δi} , i = 1, 2, and

a(E ,F) ≡ a(v⃗1, v⃗2) = {α1α2 + β1β2 + γ1γ2 + δ1δ2 ,α1β2 + β1α2 ,α1γ2 + γ1α2 ,α1δ2 + δ1α2} ,

c(E ,F) ≡ c(v⃗1, v⃗2) = {0,β1γ2 + γ1β2, γ1δ2 + δ1γ2, δ1β2 + β1δ2} ,

Pr(a(v⃗1, v⃗2)) = 1− Pr(c(v⃗1, v⃗2)) ,

Pr(c(v⃗1, v⃗2)) = β1γ2 + γ1β2 + γ1δ2 + δ1γ2 + δ1β2 + β1δ2 .
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Result 4 There is a region in the parameter space of the depolarisation channel

for which the higher the order of the superswitch, the higher the guessing prob-

ability. Moreover, as a consequence of Results 1 and 2, the guessing probability

in a region including the point p = 1 increases with the order of the superswitch

in comparison to the multiple-copy guessing probability for any finite number of

copies.
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• I defined the problem of noisy quantum state discrimination.

• I presented a protocol that uses indefinite causal order through the quantum switch and higher order generalisations.
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