

Bridging magic and non-Gaussian resources via Gottesman-Kitaev-Preskill encoding

Oliver Hahn

University of Tokyo

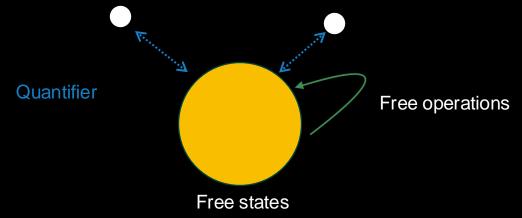
Joint work with Ryuji Takagi and Giulia Ferrini

PRX Quantum 6, 010330

Introduction

Quantum Resources for quantum advantages

- **Big goal**: Quantitative understanding of quantum resources enabling quantum advantages underlying given physical and operational settings.
- Quantum resource theories: Framework to deal with quantification and manipulation of quantum resources

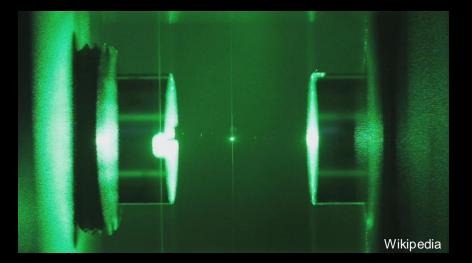


• Here, we study quantum computational resources relevant in CV and DV systems.

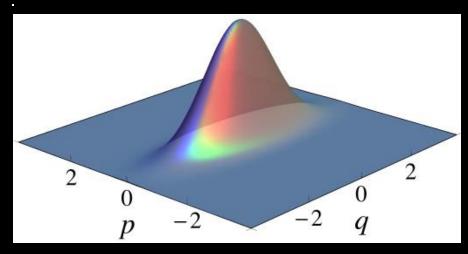
Continuous Variables

- Quantum information encoded in q. modes
 - Harmonic oscillators
- Relevant observables (\hat{q}, \hat{p}) have continuous spectrum
 - Infinite dimensional Hilbert space

 $[\hat{q},\hat{p}]=i$



- Gaussian quantum optics offers rich playground
- Important since it can be implemented experimentally
- Many analytical tools



$$\begin{array}{ll} \text{Gaussian unitary operations} & U=e^{iH} \\ & H=\frac{1}{2}r^{T}\text{H}r+\bar{r}r \\ \text{Gaussian states} & \rho_{G}=\frac{e^{-\beta H}}{\text{Tr}[e^{-\beta H}]} \end{array} \end{array} \begin{array}{ll} \text{Displacements} \\ \text{Symplectic} \end{array}$$

Gaussian states are fully characterized by covariance matrix and mean!

• Displacement operators (CV Paulis): $\hat{D}(\mathbf{r}) = \prod_{j=1} e^{-ir_{p_j}r_{q_j}/2} e^{-ir_{q_j}\hat{p}_j} e^{ir_{p_j}\hat{q}_j}$

• Symplectic unitaries: $\hat{U}_G \hat{D}(\mathbf{r}) \hat{U}_G^\dagger = \hat{D}(S\mathbf{r})$ $S\Omega S^T = \Omega$

$$\Omega = \begin{pmatrix} 0 & -\mathbb{1}_n \\ \mathbb{1}_n & 0 \end{pmatrix}$$

Simulatability

Any quantum process that begins with

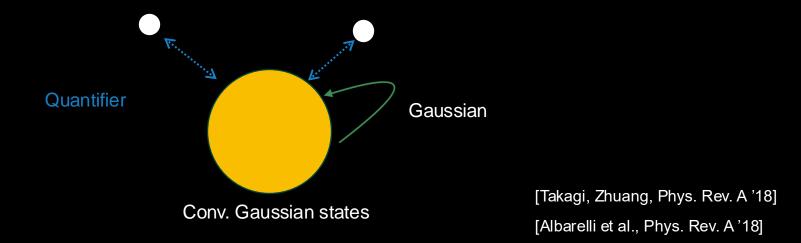
- Gaussian states
- Performs only Gaussian unitaries
- Involves only measurements of canonical operators (including finite losses) can be simulated efficiently on a classical computer.

[Mari, Eisert, Phys. Rev. Lett. '12]

Non-Gaussianity

• Gaussian circuits are classical simulatable

• Non-Gaussianity is a necessary resource for quantum advantage



CV Wigner function

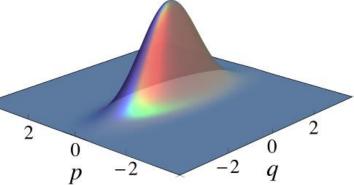
• Phase-space representation of a quantum state

• Fully equivalent to the density operator formalism

$$W_{\hat{
ho}}(\boldsymbol{r}) = \left(rac{1}{2\pi}
ight)^{n} \int_{\mathbb{R}^{n}} \mathrm{d}\boldsymbol{x} e^{i \boldsymbol{r_{p}x}} \left\langle \boldsymbol{r_{q}} + rac{\boldsymbol{x}}{2} \right| \hat{
ho} \left| \boldsymbol{r_{q}} - rac{\boldsymbol{x}}{2}
ight
angle_{\hat{q}}$$

• The Wigner function forms a quasi-probability distribution

Oliver Hahn Bridging magic and non-Gaussian resources via Gottesman-Kitaev-F

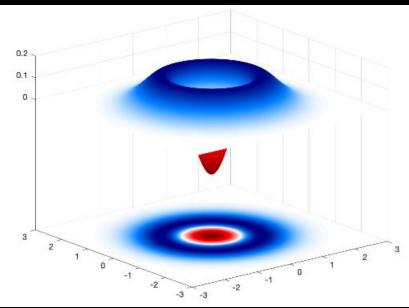


Wigner negativity

 Wigner negativity shows genuine non-Gaussianity

 $\|W_{
ho}^{
m CV}\|_{1} = \int \mathrm{d}\boldsymbol{r} \left|W_{
ho}^{
m CV}(\boldsymbol{r})\right|$

- Monotone under "Gaussian protocols"
 - Gaussian unitary
 - Attaching vacuum
 - Gaussian measurements
 - Gaussian feedforward



[Takagi, Zhuang, Phys. Rev. A '18] [Albarelli et al., Phys. Rev. A '18]

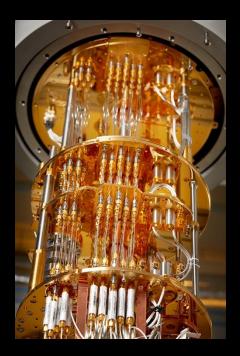
2025-03-24

Discrete Variables

• Qudit Pauli
$$\hat{P}_d(oldsymbol{u}) = \otimes_{i=1}^n \omega_d^{rac{1}{2}a_ib_i} \hat{X}_d^{a_i} \hat{Z}_d^{b_i}$$

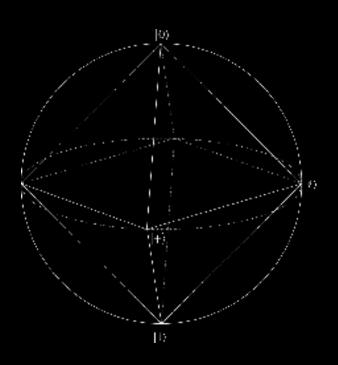
e set is
$$\{R, P, extsf{SUM}, T$$

• Clifford unitaries: $\hat{U}_C \hat{P}_d(oldsymbol{u}) \hat{U}_C^\dagger = \hat{P}_d(Soldsymbol{u})$



Stabilizer states

- Pure stabilizer states are the extreme points of the octrahedron
- Closed under Clifford operations
- Eigenstates of Pauli operators



UTokyo

$|0\rangle$ $\langle | 1 \rangle$

Magic states

- Magic states enable non-Clifford operations through teleportation
- Qubit: Most famous examples *T* and *H* type

$$|H\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle + e^{i\pi/4} |1\rangle\Big)$$

 $|T\rangle = \cos(\beta) |0\rangle + \sin(\beta) e^{i\pi/4} |1\rangle$

$$\cos(2\beta) = \frac{1}{\sqrt{3}}$$

 (ΠI)

Why stabilizer and magic states?

Gottesman-Knill theorem

A quantum computer based only on:

- 1. Qudits initialized in a Pauli eigenstate
- 2. Clifford group operations
- 3. Pauli measurements

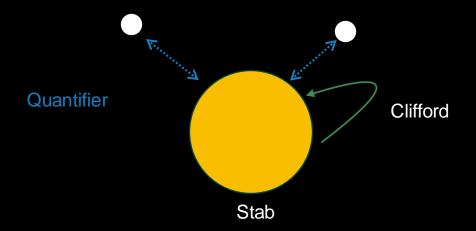
Can be simulated efficiently with a classical computer

[Gottesman '98]

2025-03-24

Magic

- Stabilizer circuits are classical simulatable
- Magic is a necessary resource for quantum advantage



UTokyo

DV Wigner function

Odd Dimensions

• Phase-space representation of a DV quantum state

te
$$W_{\rho}^{\mathrm{DV}}(\boldsymbol{u}) = d^{-n} \operatorname{Tr} \left[\hat{A}(\boldsymbol{u}) \hat{\rho} \right]$$

 $\hat{A}(\boldsymbol{u}) = d^{-n} \sum_{\boldsymbol{v} \in \mathbb{Z}_{d}^{2n}} \omega_{d}^{-\boldsymbol{u}\Omega_{n}\boldsymbol{v}^{T}} \hat{P}_{d}(\boldsymbol{v})^{\dagger}$
 (\boldsymbol{u})

• Wigner negativity $\|W^{\mathrm{DV}}_{
ho}\|_1 = \sum \left|W^{\mathrm{DV}}_{
ho}(oldsymbol{u})
ight|$

 $oldsymbol{u}$

- Monotone under "Stabilizer protocols"
 - Clifford unitary
 - Auxilliary computation basis states
 - Pauli measurements
 - Clifford feedforward

[Veitch et al., New J. Phys. '14]

Connecting CV and D

2025-03-24

DV

- Pauli
- Clifford
- DV Wigner function
- Magic
 - Negativity of Wigner function

CV

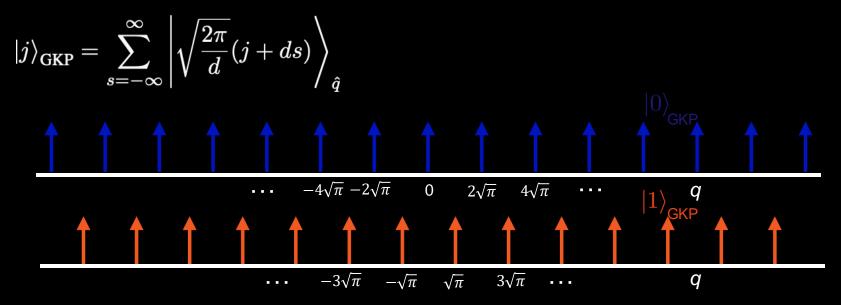
- Displacements \bullet
- Gaussian \mathbf{O}
- **CV** Wigner function \bullet
- Non-Gaussianity \mathbf{O}
 - Negativity of Wigner function •

Any mapping between magic and non-Gaussian measures for a given state?

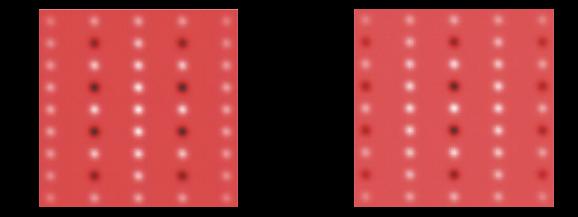
Quantitative connections between DV and CV

Gottesman-Kitaev-Preskill Code

• Error correction code for continuous-variable systems that encode qudits



Wigner functions of GKP states

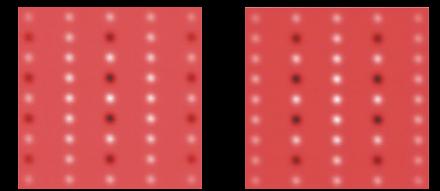


- (Ideal) GKP states are unnormalizable and have infinite non-Gaussianty
- The Wigner function is periodic with a unit cell $[0,\sqrt{2}d\pi)$

Wigner functions of GKP states

• Consider negativity of one unit cell

$$\|W_{\rho_{\rm GKP}}^{\rm CV}\|_{1,\rm cell} = \int_{\rm cell} \mathrm{d}\boldsymbol{r} |W_{\rho_{\rm GKP}}^{\rm CV}|$$



- Constant for pure stabilizer states
- Is there a connection between non-Gaussianity and magic?

[Yamasaki, Matsuura, Koashi, PRR '20] [Hahn et al. PRL '22]

CV-DV connection with Wigner function

• We consider the operator basis
$$\hat{O}_{l,m} = \omega_d^{-ml/2} \hat{M}_l \hat{Z}_d^m$$
 $\hat{M}_l = \sum_{x \in \mathbb{Z}_d} |l-x\rangle \langle x|$

- Coefficients of this basis
$$x_{\hat{
ho}}(m{l},m{m})=d^{-n}\operatorname{Tr}\!\left(\hat{O}_{m{l},m{m}}\hat{
ho}
ight)$$

• Wigner function

$$W_{\rho_{\rm GKP}}^{\rm CV}(\boldsymbol{r}) = \frac{\sqrt{d}^n}{\sqrt{8\pi^n}} \sum_{\boldsymbol{l},\boldsymbol{m}} c_{\rho_{\rm GKP}}(\boldsymbol{l},\boldsymbol{m}) \delta\left(\boldsymbol{r_p} - \boldsymbol{m}\sqrt{\frac{\pi}{2d}}\right) \delta\left(\boldsymbol{r_q} - \boldsymbol{l}\sqrt{\frac{\pi}{2d}}\right)$$

$$c_{\rho_{\rm GKP}}(\boldsymbol{l},\boldsymbol{m}) = x_{\rho}(\boldsymbol{l},\boldsymbol{m})$$

CV-DV connection with Wigner function

- General connection between Wigner negativity and magic
- For a n-qudit state we get

$$\|x_{\rho}\|_{1} = \frac{\|W_{\rho_{\text{GKP}}}^{\text{CV}}\|_{1,\text{cell}}}{\|W_{\text{STAB}_{n},\text{GKP}}^{\text{CV}}\|_{1,\text{cell}}}$$

Magic

Non-Gaussianity

- For odd:
$$\|x_{
ho}\|_1 = \left\|W_{
ho}^{
m DV}
ight\|_1$$

Magic measure

- For odd dimensions, $||x_{\rho}||_1$ coincides with Wigner negativity $||W_{\rho}^{\rm DV}||$
- For even dimensions, $||x_{\rho}||_1$ serves as a magic measure in the following sense: Invariance under Clifford unitaries $\left\|x_{U_C \rho U_C^{\dagger}}\right\|_1 = \left\|x_{\rho}\right\|_1$

 - Every pure stabilizer state $\hat{\phi}$ takes the minimum value $\|x_{\phi}\|_1 = 1$ •
 - For multi-qubit systems, $\|x_{\phi}\|_1 = 1$ if and only if $\hat{\phi}$ is a stabilizer state

Application

In GKP code, logical Clifford operations can be implemented by Gaussian operations.

$$\left|\bar{\psi}\right\rangle - H - \bar{H} \left|\bar{\psi}\right\rangle \iff \left|\psi_{\rm GKP}\right\rangle - G - G \left|\psi_{GKP}\right\rangle$$

Known implementations for logical non-Clifford operations use non-Gaussian
 operation

 Natural guess: Non-Gaussian operations are needed to implement logical non-Clifford gates.

Not obvious because GKP states already have non-Gaussianity initially.

Non-Clifford needs non-Gaussianity

Suppose Λ is a channel with n-qubit input and output. If there is a pure magic state $\hat{\psi}$ and a pure stabilizer state $\hat{\phi}$ such that $\Lambda(\hat{\phi}) = \hat{\psi}$, then Λ cannot be implemented in the GKP code space by Gaussian protocols composed by

- Feedforwarded Gaussian operations conditioned on the measurement outcomes
- Gaussian unitary
- Attaching vacuum
- Gaussian measurements
- Extending previous finding for specific qubit operations
- For odd dimensions, the condition can be relaxed to the existence of a stabilizer

state
$$\hat{\sigma}$$
 and a state such that $\Lambda(\hat{\sigma}) = \hat{\rho}^{\text{and}} \|W^{\text{DV}}_{\rho}\|_{1} > 1$

[Yamasaki et al. Phys. Rev. Res. '20]

Summary & Outlook

- Established the quantitative connection between magic (DV) and non-Gaussian (CV) by GKP encoding via Wigner and characteristic functions.
 - Showed that non-Clifford gate in GKP code space cannot be implemented by a Gaussian protocol
 - Proposed a simulation algorithm based on the distribution defined by a Hermitian extension of Pauli operators
- Finite squeezing?
- Other DV-CV connections with different bosonic codes?