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Entanglement                       communication, key distribution, MBQC    Rev. Mod. Phys. 81, 865 (2009)

Non-locality                         communication complexity, device independence, randomness            
Rev. Mod. Phys. 86, 419 (2014)                                                          generation
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Resource breaking channels

“Broken” quantum property :  

Entanglement                       communication, key distribution, MBQC    Rev. Math. Phys. 15, 629 (2003)

Non-locality                         communication complexity, device independence, randomness                                                                      
generationJ. Phys. A: Math. Theor. 48 155302 (2015)

https://www.worldscientific.com/doi/abs/10.1142/S0129055X03001709
https://iopscience.iop.org/article/10.1088/1751-8113/48/15/155302
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Phys. Rev. Lett. 69, 2881 (1992) 

Phys. Rev. Lett. 70, 1895 (1993)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.69.2881
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.70.1895


Process resource-breaking 
channels

Information theoretic 
taskResource state

No quantum 
advantage

arxiv: 2309.03108 

A. Muhuri, A. Patra, R.G., A. Sen (De)

https://arxiv.org/pdf/2309.03108.pdf
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Process  - Universal Quantum Computation

Hinder UQC ——>   
Magic-breaking channels

arxiv: 2409.04425 

A. Patra, R.G., A. Ferraro, A. Sen (De)

https://arxiv.org/abs/2409.04425
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Magic-breaking channels : Definition

ℳ = {Λℂd→ℂd : Λℂd→ℂd(ρ) ∈ STAB(ℂd)∀ρ ∈ ℂd}

convert any input state to stabilizer state at output

necessary for fault tolerance

efficiently simulable on 
classical computers

Group22: Procs. of the XXII Int. Coll. on Group Theoretical Methods in Physics

https://arxiv.org/abs/quant-ph/9807006


Magic-breaking channels : Definition

ℳ = {Λℂd→ℂd : Λℂd→ℂd(ρ) ∈ STAB(ℂd)∀ρ ∈ ℂd}

convert any input state to stabilizer state at output

ℳ̃ = {Λℂd→ℂd : UNC ∘ Λℂd→ℂd(ρ) ∈ STAB(ℂd)∀ρ ∈ ℂd}

convert any input state to stabilizer state at output even with non-Clifford 
post-processing

(similar to absolute separable states Phys. Rev. A. 63, 032307 (2001))

Magic-breaking

Strictly magic-
breaking

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.63.032307
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Properties
Unitaries can never be MB 

Channels destroying magic of pure states can do so for all states 

MB channels form a convex and compact set

Extreme points of {MB} contain measure-preapre channels preparing non-
orthogonal stabilizer states

∑
k

|ηk⟩⟨ηk |⟨ek |ρ |ek⟩ : ⟨ej |ek⟩ = δjk & ⟨ηj |ηk⟩ ≠ 0

Extreme CQ channels preparing non-orthogonal states are extreme CPTP maps
Rev. Math. Phys. 15, 629 (2003)

https://www.worldscientific.com/doi/abs/10.1142/S0129055X03001709
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ρ({mi}) =
1
2

(𝕀2 + ∑
i

miσi) ρ({m′ i}) =
1
2

(𝕀2 + ∑
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m′ iσi)
ΛC

m′ i(mi, λi, ti) = λimi + ti

Lin. Alg. Appl. 347 159 (2002)

https://www.sciencedirect.com/science/article/pii/S002437950100547X


Qubit channels - geometric 
analysis

Λ = Upost ∘ ΛC ∘ Upre

ρ({mi}) =
1
2

(𝕀2 + ∑
i

miσi) ρ({m′ i}) =
1
2

(𝕀2 + ∑
i

m′ iσi) ρ({m′ ′ i }) =
1
2

(𝕀2 + ∑
i

m′ ′ i σi)
ΛC Upost

m′ i(mi, λi, ti) = λimi + ti m′ ′ i = f(m′ j, θ, ϕ, ψ)

Lin. Alg. Appl. 347 159 (2002)

https://www.sciencedirect.com/science/article/pii/S002437950100547X


Qubit channels - geometric 
analysis

Λ = Upost ∘ ΛC ∘ Upre

Sphere

Lin. Alg. Appl. 347 159 (2002)

https://www.sciencedirect.com/science/article/pii/S002437950100547X


Qubit channels - geometric 
analysis

Λ = Upost ∘ ΛC ∘ Upre

ΛC

Sphere Shifted ellipsoid

Lin. Alg. Appl. 347 159 (2002)

https://www.sciencedirect.com/science/article/pii/S002437950100547X


Qubit channels - geometric 
analysis

Λ = Upost ∘ ΛC ∘ Upre

ΛC Upost

Sphere Shifted ellipsoid Rotated shifted ellipsoid

Lin. Alg. Appl. 347 159 (2002)

https://www.sciencedirect.com/science/article/pii/S002437950100547X


Qubit channels - geometric 
analysis

μ1 =
sin ψ (m′ ′ 3 sin θ + cos θ (m′ ′ 2 cos ϕ − m′ ′ 1 sin ϕ))

λ1

cos ψ (m′ ′ 1 cos ϕ + m′ ′ 2 sin ϕ)
λ1

−
t1
λ1

μ2 =
m′ ′ 3 cos ψ sin θ − sin ψ (m′ ′ 1 cos ϕ + m′ ′ 2 sin ϕ)

λ2

cos θ cos ψ (m′ ′ 2 cos ϕ − m′ ′ 1 sin ϕ)
λ2

−
t2
λ2

,

μ3 =
cos θ (m′ ′ 3 − m′ ′ 2 cos ϕ tan θ + m′ ′ 1 sin ϕ tan θ)

λ3

t3
λ3

Rotated shifted ellipsoid

Λ = Upost ∘ ΛC ∘ Upre
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Qubit MB channels - geometric 
analysis

Stabilizer polytope
(useless states for UQC)

Rotated shifted ellipsoid
within stabilizer polytope

ΛMB(ρ) ∈ STAB

He knows I’m a squib!
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Condition for MB
Simultaneously solve the rotated shifted ellipsoid and the stabilizer polytope equations

Solve ellipsoid with m′ ′ 1 + m′ ′ 2 + m′ ′ 3 = 1

m′ ′ j = fj(m′ ′ 1, {λk, tk}, θ, ϕ, ψ) ± αm′ ′ 2
1 + βm′ ′ 1 + γ

Magic broken iff ellipsoid entirely within the polytope - finite or no simultaneous solutions

αm′ ′ 2
1 + βm′ ′ 1 + γ ≤ 0

Repeat for all polytope facesNecessary and sufficient
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Classes of MB channels
Strictly magic-breaking

Final ellipsoid inside largest sphere within stabilizer polytope

| t | + |λi | ≤
1

3
∀ i : | t | = ∑

k

t2
k

Sufficient
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∑
i

λ2
i ≤ (1 − ∑

i

| tk | )2
Necessary and sufficient
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ρ → (1 − p/2)ρ +
p
2

σzρσz : p = 1

Classes of MB channels
Channels with Clifford post-processing - Pauli channels and unital EBT

Dephasing

ρ → p𝕀/2 + (1 − p)ρ : p ≥ 1 − 1/ 3
Depolarising

Unital EBT

∑
i

|λi | ≤ 1 ⟹ ∑
i

λ2
i ≤ 1 ( |λi | ≤ 1)
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Solve for no simultaneous solution of final ellipsoid and ∑
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(ℛρ > 3/ 7 : T-distillable)

Clifford post-processing
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Classes of MB channels
T-distillability breaking channels

p ≥ 1 − 3/7
Depolarising

Solve for no simultaneous solution of final ellipsoid and ∑
i

|mi | = 3/ 7

(ℛρ > 3/ 7 : T-distillable)

Clifford post-processing

∑
i

λ2
i ≤ (

3

7
− ∑

i

| tk | )2

p ≥ 0.622
Dephasing
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Multiqubit MB channels

Necessary
⊗N

i=1 Λi ∈ MB only if Λi ∈ MB ∀ i

Trj̄[ ⊗2
i=1 Λi(ρ1,2,…j−1,j,j+1,…,N)] = Λj(ρj) ∉ STAB

STAB Resource generation through 
free operation!!
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Multiqubit MB channels

Insufficient
⊗N

i=1 Λi ∈ MB only if Λi ∈ MB ∀ i

ℛ(Λ⊗2 |η⟩) = 1.0212 : ℛ( |η⟩) = 1.834

ΛC = (λ1 = − 0.9,λ2 = − 0.3,λ3 = 0.2, ti = 0); Upost = 𝕀

(−0.482 − ι0.648) |00⟩ + (0.015 − 0.022ι) |01⟩ + (−0.131 − 0.098ι) |10⟩ + (−0.145 − 0.548ι) |11⟩
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⊗N
j=1 ΛMB

j (∑
i

piρ1
i ⊗ … ⊗ ρN

i ) ∈ STAB

Tensor product of MB channels cannot destroy magic present in correlations

⊗N
i=1 ΛMB

i ∘ ⊗N−1
j=1 ΛEBT

j ∈ MB
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Multiqubit MB channels: 
Consequences of insufficiency

Tensor product of MB channels cannot destroy magic present in correlations

Dynamical resource theory of magic preservability : activation of resource 
preservability

no resource activation like non-locality

Θ(ℰ) := 𝒫 ∘ (ℰ ⊗ Λ̃) ∘ 𝒬 - superchannel with stabilizer pre- and post-processing

Λ̃ ⊗ ΛMB ∈ MBabsolutely magic-breaking channels : 

Quantum 4, 244 (2020)

https://quantum-journal.org/papers/q-2020-03-19-244/


Multiqubit MB channels: 
Consequences of insufficiency

Tensor product of MB channels cannot destroy magic present in correlations

Dynamical resource theory of magic preservability : activation of resource 
preservability

no resource activation like non-locality

absolutely magic-breaking channels

can destroy magic in correlations - detrimental for UQC

Quantum 4, 244 (2020)

https://quantum-journal.org/papers/q-2020-03-19-244/
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Future directions

Devise distance-based dynamical resource monotnes

Limitations in practical QC applications

distributed QC : links between quantum processors
blind QC : noisy channel between client and server       
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