Second Law of Entanglement Manipulation with Entanglement Battery

arxiv:2405.10599

Ray Ganardi

2025.03.18

University of Warsaw, Poland NTU, Singapore

Tulja Varun Kondra

Heinrich Heine University Düsseldorf

Nelly H. Y. Ng NTU

Alexander Streltsov

University of Warsaw Polish Academy of Sciences

Second law of thermodynamics

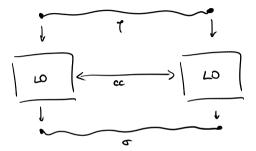
 $\Delta S \geq 0$

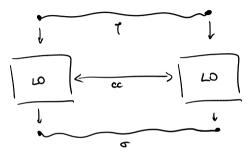
Second law of thermodynamics

 $\Delta S \geq 0$

 $S(\rho) \leq S(\sigma)$ iff. $\rho \rightarrow \sigma$ adiabatically [Lieb Yngvasson, Phys Rep 1999]

Second law of thermodynamics


 $\Delta S \geq 0$


 $S(\rho) \leq S(\sigma)$ iff. $\rho \rightarrow \sigma$ adiabatically [Lieb Yngvasson, Phys Rep 1999]

Carnot's theorem

An engine runs at the optimal efficiency iff. it is reversible

Entanglement

1-way LOCC $\Lambda(\rho) = \sum_{ij} (A_i \otimes B_{ij}) \rho(A_i \otimes B_{ij})^{\dagger}$ with $\sum_i A_i^{\dagger} A_i = \mathbf{1} = \sum_j B_{ij}^{\dagger} B_{ij}$. Separable states

 $\rho = \sum_i p_i \rho_A^i \otimes \rho_B^i.$

Asymptotic transformation rate

 $R(\rho \to \sigma) = \sup \left\{ n/m \, | \, \Lambda(\rho^{\otimes m}) \approx_{\epsilon} \sigma^{\otimes n}, \, \Lambda \text{ LOCC} \right\}$

Asymptotic transformation rate

 $R(\rho \to \sigma) = \sup \left\{ n/m \, | \, \Lambda(\rho^{\otimes m}) \approx_{\epsilon} \sigma^{\otimes n}, \, \Lambda \text{ LOCC} \right\}$

Reversibility

 $R(\rho \to \sigma) R(\sigma \to \rho) = 1$

Asymptotic transformation rate

 $R(\rho \to \sigma) = \sup \left\{ n/m \, | \, \Lambda(\rho^{\otimes m}) \approx_{\epsilon} \sigma^{\otimes n}, \, \Lambda \text{ LOCC} \right\}$

Reversibility

 $R(\rho \to \sigma) R(\sigma \to \rho) = 1$

Second law

 $R(\rho \to \sigma) = \frac{R(\rho \to \Phi)}{R(\sigma \to \Phi)}$

Asymptotic transformation rate

 $R(\rho \to \sigma) = \sup \left\{ n/m \, | \, \Lambda(\rho^{\otimes m}) \approx_{\epsilon} \sigma^{\otimes n}, \, \Lambda \text{ LOCC} \right\}$

Reversibility

 $R(\rho \to \sigma) R(\sigma \to \rho) = 1$

Second law

 $R(\rho \to \sigma) = \frac{R(\rho \to \Phi)}{R(\sigma \to \Phi)}$

Is entanglement reversible?

Asymptotic transformation rate

 $R(\rho \to \sigma) = \sup \left\{ n/m \, | \, \Lambda(\rho^{\otimes m}) \approx_{\epsilon} \sigma^{\otimes n}, \, \Lambda \text{ LOCC} \right\}$

Reversibility

 $R(\rho \to \sigma) R(\sigma \to \rho) = 1$

Second law

 $R(\rho \to \sigma) = \frac{R(\rho \to \Phi)}{R(\sigma \to \Phi)}$

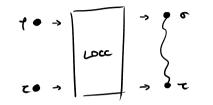
Is entanglement reversible?

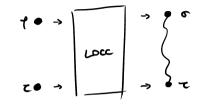
No, because of bound entanglement [Horodecki Phys Lett A 1997, Horodecki³ PRL 1998, Vidal Cirac PRL 2001]

 $R(\rho \rightarrow \Phi)=0, \mbox{ but } R(\Phi \rightarrow \rho) < \infty$

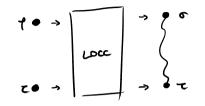
Can we make entanglement reversible? • PPT entanglement theory is not reversible [Wang Duan PRL 2017]

- PPT entanglement theory is not reversible [Wang Duan PRL 2017]
- Non-entangling theory is not reversible [Lami Regula Nat Phys 2023]

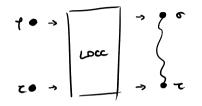

- PPT entanglement theory is not reversible [Wang Duan PRL 2017]
- Non-entangling theory is not reversible [Lami Regula Nat Phys 2023]
- Hermitian-preserving PPT theory is reversible [Wang et al arxiv 2023]


- PPT entanglement theory is not reversible [Wang Duan PRL 2017]
- Non-entangling theory is not reversible [Lami Regula Nat Phys 2023]
- Hermitian-preserving PPT theory is reversible [Wang et al arxiv 2023]
- Probabilistic theory is reversible [Regula Lami Nat Comm 2024]

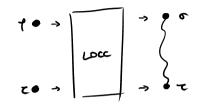
- PPT entanglement theory is not reversible [Wang Duan PRL 2017]
- Non-entangling theory is not reversible [Lami Regula Nat Phys 2023]
- Hermitian-preserving PPT theory is reversible [Wang et al arxiv 2023]
- Probabilistic theory is reversible [Regula Lami Nat Comm 2024]
- Almost non-entangling theory is reversible [Brandão Plenio Nat Phys 2008, Hayashi Yamasaki arxiv 2024, Lami arxiv 2024]


- PPT entanglement theory is not reversible [Wang Duan PRL 2017]
- Non-entangling theory is not reversible [Lami Regula Nat Phys 2023]
- Hermitian-preserving PPT theory is reversible [Wang et al arxiv 2023]
- Probabilistic theory is reversible [Regula Lami Nat Comm 2024]
- Almost non-entangling theory is reversible [Brandão Plenio Nat Phys 2008, Hayashi Yamasaki arxiv 2024, Lami arxiv 2024]

Any physical, non-probabilistic setting?



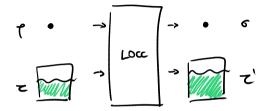
Defined on the level of state transformations


Defined on the level of state transformations

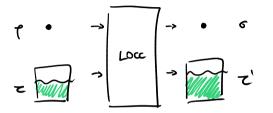
Not non-entangling as a map, although it is on the level of state transformations

Defined on the level of state transformations

Not non-entangling as a map, although it is on the level of state transformations Is it reversible?

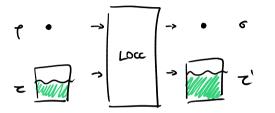


Defined on the level of state transformations


Not non-entangling as a map, although it is on the level of state transformations

Is it reversible?

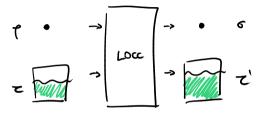
No, PPT bound entangled states are still bound entangled catalytically [Lami et al PRA 2024]


• • • Fix E. $\rho \xrightarrow{}_{E} \sigma$ if $\exists \tau, \Lambda \in \text{LOCC s.t.}$ $\overrightarrow{\rho \tau}$ $\Lambda(\rho \otimes \tau) = \sigma \otimes \tau',$ $E(\tau') \ge E(\tau)$

Fix E. $\rho \xrightarrow{}_{E} \sigma$ if $\exists \tau, \Lambda \in \text{LOCC s.t.}$ $\Lambda(\rho \otimes \tau) = \sigma \otimes \tau',$ $E(\tau') \ge E(\tau)$

If ${\boldsymbol E}$ is additive, then

$$E(\rho) + E(\tau) = E(\rho \otimes \tau) \ge E(\sigma \otimes \tau') = E(\sigma) + E(\tau'),$$
 so $E(\rho) \ge E(\sigma)$ if E is finite


Fix E. $\rho \xrightarrow{}_{E} \sigma$ if $\exists \tau, \Lambda \in \text{LOCC s.t.}$ $\Lambda(\rho \otimes \tau) = \sigma \otimes \tau',$ $E(\tau') \ge E(\tau)$

If E is additive, then

$$E(\rho) + E(\tau) = E(\rho \otimes \tau) \ge E(\sigma \otimes \tau') = E(\sigma) + E(\tau'),$$

so $E(\rho) \ge E(\sigma)$ if E is finite

 $E \mbox{ faithful} \Rightarrow \mbox{non-entangling state transformation}$

Fix E. $\rho \xrightarrow{}_{E} \sigma$ if $\exists \tau, \Lambda \in \text{LOCC s.t.}$ $\Lambda(\rho \otimes \tau) = \sigma \otimes \tau',$ $E(\tau') \ge E(\tau)$

If E is additive, then

$$E(\rho) + E(\tau) = E(\rho \otimes \tau) \ge E(\sigma \otimes \tau') = E(\sigma) + E(\tau'),$$

so $E(\rho) \ge E(\sigma)$ if E is finite

E faithful \Rightarrow non-entangling state transformation

Squashed entanglement works [Christandl Winter JMP 2004, Li Winter CMP 2014, Alicki Fannes J Phys A 2004], but not uniquely

Results

Theorem 1 (single-copy)

Choose E as a finite and additive entanglement measure.

Then, ρ can be transformed to σ with a battery iff. $E(\rho) \ge E(\sigma)$

Results

Theorem 1 (single-copy)

Choose E as a finite and additive entanglement measure.

```
Then, \rho can be transformed to \sigma with a battery iff. E(\rho) \ge E(\sigma)
```

Proof:

 (\Rightarrow) use properties of E

 (\Leftarrow) prepare σ in the battery, then swap by LOCC

Results

Theorem 1 (single-copy)

Choose E as a finite and additive entanglement measure.

```
Then, \rho can be transformed to \sigma with a battery iff. E(\rho) \geq E(\sigma)
```

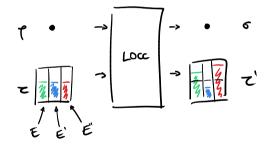
Proof:

 (\Rightarrow) use properties of E

 (\Leftarrow) prepare σ in the battery, then swap by LOCC

Theorem 2 (reversibility)

Choose E as a finite, additive, and asymptotically continuous entanglement measure. Then


$$R(\rho \xrightarrow{E} \sigma) = \frac{E(\rho)}{E(\sigma)}$$

How it works

Monotones are "types" of entanglement $\rho \to \sigma \text{ iff. } M(\rho) \geq M(\sigma) \text{ for all monotones } M$

How it works

Monotones are "types" of entanglement $\rho \to \sigma$ iff. $M(\rho) \ge M(\sigma)$ for all monotones M

We are supplying other types of entanglement except ${\boldsymbol E}$

• Single measure on battery is artificial

 Single measure on battery is artificial Yes, but there is a single distinguished measure in any reversible theory Brandão-Plenio framework exhibits the same feature

- Single measure on battery is artificial Yes, but there is a single distinguished measure in any reversible theory Brandão-Plenio framework exhibits the same feature
- Consistency with [Lami Regula Nat Phys 2023]

- Single measure on battery is artificial Yes, but there is a single distinguished measure in any reversible theory Brandão-Plenio framework exhibits the same feature
- Consistency with [Lami Regula Nat Phys 2023]
 These are non-entangling transformations, not operations

- Single measure on battery is artificial
 Yes, but there is a single distinguished measure in any reversible theory
 Brandão-Plenio framework exhibits the same feature
- Consistency with [Lami Regula Nat Phys 2023]
 These are non-entangling transformations, not operations
- How can you get a different rate from $D^{\infty}(\rho || \text{SEP})$ [Horodecki et al PRL 2002]?

- Single measure on battery is artificial
 Yes, but there is a single distinguished measure in any reversible theory
 Brandão-Plenio framework exhibits the same feature
- Consistency with [Lami Regula Nat Phys 2023]
 These are non-entangling transformations, not operations
- How can you get a different rate from $D^{\infty}(\rho \| \text{SEP})$ [Horodecki et al PRL 2002]? The result does not consider additional systems

- Single measure on battery is artificial Yes, but there is a single distinguished measure in any reversible theory Brandão-Plenio framework exhibits the same feature
- Consistency with [Lami Regula Nat Phys 2023]
 These are non-entangling transformations, not operations
- How can you get a different rate from $D^{\infty}(\rho \| \text{SEP})$ [Horodecki et al PRL 2002]? The result does not consider additional systems
- What's the value added compared to ARNG?

- Single measure on battery is artificial Yes, but there is a single distinguished measure in any reversible theory Brandão-Plenio framework exhibits the same feature
- Consistency with [Lami Regula Nat Phys 2023]
 These are non-entangling transformations, not operations
- How can you get a different rate from $D^{\infty}(\rho \| \text{SEP})$ [Horodecki et al PRL 2002]? The result does not consider additional systems
- What's the value added compared to ARNG?
 Reversibility with LOCC

Shows reversibility of state transformation is different from maps

Problem

How to get a second law in quantum thermodynamics, in a single shot setting?

Problem

How to get a second law in quantum thermodynamics, in a single shot setting?

Catalytic transformations between energy-incoherent states are governed by free energy [Müller PRX 2018] How to extend to coherent states?

Problem

How to get a second law in quantum thermodynamics, in a single shot setting?

Catalytic transformations between energy-incoherent states are governed by free energy [Müller PRX 2018] How to extend to coherent states?

Theorem 3

 ρ can be transformed to σ with a battery iff. $F(\rho) \geq F(\sigma),$ where $F(\rho) = k_B T(S(\rho \| \gamma) - \log Z)$

• Physical, non-probabilistic entanglement reversibility with battery

- Physical, non-probabilistic entanglement reversibility with battery
- Fully-quantum single-shot second law in thermodynamics

- Physical, non-probabilistic entanglement reversibility with battery
- Fully-quantum single-shot second law in thermodynamics

What's next

• Minimum resource needed in the battery

- Physical, non-probabilistic entanglement reversibility with battery
- Fully-quantum single-shot second law in thermodynamics

What's next

- Minimum resource needed in the battery
- Catalysis: use monotones to quantify how valuable the catalyst is!

- Physical, non-probabilistic entanglement reversibility with battery
- Fully-quantum single-shot second law in thermodynamics

What's next

- Minimum resource needed in the battery
- Catalysis: use monotones to quantify how valuable the catalyst is!
- Transformation independent battery

- Physical, non-probabilistic entanglement reversibility with battery
- Fully-quantum single-shot second law in thermodynamics

What's next

- Minimum resource needed in the battery
- Catalysis: use monotones to quantify how valuable the catalyst is!
- Transformation independent battery

Thank you! arxiv:2405.10599

