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What is “asymptotic equipartition”?

Asymptotic equipartition property (AEP) ey
EEVITE INBES R @I
A form of the law of large numbers in information theory INFORMATION

IRLEQIROY

AEP or Shannon-MacMillan-Breiman theorem s _ - ‘
Given i.i.d. random variables X, X,, ---, X, the probability p(X;, X,, ---, X)) satisfies ‘]

1
——logp(X, X5, -, X)) —> H(X) in probability
’ n




What is “asymptotic equipartition”?

nrneemems  TYPICal set v.s. Non-typical set

Size of the typical set is nearly 241X

The typical set has probability nearly 1

SRR Non-typical set Elements in the typical set are nearly equiprobable

o A m 5 s, SRS RHIIHNS Typical set

S R an. oo gements 1€ 1IN the heart of information theory:

----------- data compression, channel coding, cryptography...

Bit strings of length n



More generic form of AEP In divergences

Divergence of interest Probability distribution

# nonnegative function

Smoothing parameter KL divergence (relative entropy)



More generic form of AEP In divergences

e
A | nll & |
Iim Iim =D, (P="|O*®") = D(P||Q) |
e=>0n-oc0 N !
_ - - _ I - I J
Shannon-McMillan-Breiman theorem:
or , O = 1 constant function e.g. [Tomamichel, Colbeck, Renner 2009]

H_ . : the size of the typical set & H, ;. : the distribution is uniform on the typical set

Chernoff-Stein Lemma:
hypothesis testing relative entropy
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Generalization to quantum AEP?



Generalization to quantum AEP?

Quantum divergence Density matrix
- 4 PSD operator

Smoothing parameter Umegaki (quantum) relative entropy



Generalization to quantum AEP?

r e e e . e e e —— e e —— e I e e —— e —— e e S e tj

lim lim —0,(0®"[|6®") = D(p]|o) |

“
|
. O

] |

-Hiai and Petz 1991: ) = D,

-Ogawa and Nagaoka 2000: remove e-dependence in the outer limit

Quantum
Stein’s lemma

- Tomamichel, Colbeck, Renner 2009: 6., = [, Q pp, ;. (A|B)and H . (A|B)

- Tomamichel, Hayashi 2013:

=D ___ ...

max

Many applications: quantum data compression, quantum state merging,
quantum channel coding, quantum cryptography, and quantum resource theory...
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Generalization to quantum AEP?

; ]
lim lim —D,(»®"[|6®") = D(p||0) |
_efOmmer oy

Limited to singletn ad I.i.d. structure



Generalization to quantum AEP?

e e e . e e e —— e e —— e I e e —— e —— e e — e tj

] |
lim lim —D,_(p®"[|6®") = D(p||o) |

e=>0n-oc0o N
_ - ]

What if?

V.S.
Correlation: beyond i.i.d. source p, # ,0®” , 0, F "
Uncertainty: not singleton p, € &/, and 6, € %, e.g. composite hypothesis
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Generalization to quantum AEP?

r e e e — e e e —— e e —— e e e e —— e —— e e — e tj

ﬁ lim lim —D _(p®"|6®") = D(p||o) |
- |

What if?

V.S.
Correlation: beyond i.i.d. source p, # p®" o, 7 O
Uncertainty: not singleton P, € ‘Q[n and o, € ‘@n e.g. composite hypothesis

Practical motivations in the classical setting e.g. [Levitan and Nerhav 2002, TIT]

Classification with training sequences (e.g. speech recognition, signal detection)
Detection of messages via unknown channels (e.g. radar target detection, watermark detection)
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Generalization to quantum AEP
beyond I1.I.d. and singleton
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Generalization to quantum AEP
beyond I1.I.d. and singleton

A set of quantum states

DA NB) = inf  D.(p,lo)
p,€EH,,6,ERB,
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Generalization to quantum AEP
beyond I1.I.d. and singleton

A very general framework that contains almost all existing quantum AEP in the literature
Including the generalized quantum Stein’s lemma,

where of, = {p®"} and A, a set of quantum states

Talk by Lami on Tuesday & Talk by Hayashi on Wednesday

14



Generalization to quantum AEP
beyond I1.I.d. and singleton

| _
| lim —D (/| B,) = D*(||B)
- - -

D¥(A||RB) .= lim —D(A || £4,)

n—oo

) € Dy, D

max }
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Generalization to quantum AEP
beyond I1.I.d. and singleton

ey —————————————————————
.1 |
~ lim —0, (7, |B,) = D* (/|| B) h

| n—-oo N

L’.l ————— —— A —————— _ = S —— —————— _ S —— e — e ——— e — ————— - —————— e — A ————— e ————— e ——— e ———e _J.l;J

Generality (divergence):

two extreme cases ) < (D, D _ . |
any divergence in between or equivalent, yield the same result
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S ————— e — e ——— - e ——— e e e R —— ———————— e - e —— e e

1
lim —D (o, || B,) = D=( || B)

n—->oo N

I

e

e e e e e e e R —

Generality (SetS): Polarset ¢° := {X : (X, Y) < 1,VY € €}
(A.1) Each & is convex and compact; (A3) <, @ A, C A, .., forallm,k € N;

(A.2) Each , is permutation-invariant;  (A.4) («,). & (). C (A1), forallm, k € N;
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Iim —
n—-oo N

Generality (sets):

(A.1) Each &, is convex and compact;

(A.2) Each &, is permutation-invariant;

Sets

) (AN B,) = D™ (A || RB)

e e e e e e e e e e e e e -:4

I

|
|

Polarset ¢° .= {X: (X, Y) < 1,VY €€ €}

Mathematical descriptions

A3 A, QAL C A, . forallm,k e N,

Singleton
Conditional states
Channel image
Recovery set
Extensions set
Incoherent states
Rains set

Nonpositive mana

{p®"} with p € Z(H)

{In® pn : pn € D(H®™)}

{N®(p,) : pp, € D(H™)} with a quantum channel N
{NBrn_con(p3R) : N € CPTP(B" : C™)} with p € 2(AB)

{wn € (A"B™)

: Trpr w, = p%”} with py € Z(A)
{pn € D2(H®") : p, = A(p,)} with the completely dephasing channel A
{pn € FE(A"B") : leBl'"B” 1 < 1} with the partial transpose T p,

{pn € HL(HE™)

|on|lw1 < 1} with the Wigner trace norm|| - |

w1

(A.4) (). Q () C (A, . ), forallm, k € N;
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| | |
| lim =D (A ||9B,) = D (A || %) |
| n—oo N |

-
Generality (SetS): Polarset ¢° .= {X: (X, Y) < 1,VY €€ €}

(A.1) Each & is convex and compact; (A3) <, @ A, C A, .., forallm,k € N;

(A.2) Each , is permutation-invariant;  (A.4) («,). & (). C (A1), forallm, k € N;

More importantly, without (A.4), the AEP does not hold in general.
Counterexamples e.g.

arXiv: 2501.09303v2 by Hayashi & arXiv: 2408.07067 by Lami, Berta, Regula
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1
” lim —D,(, ||B,) = D™(A||B)

| n—-oo N

e

e e e e e e e e e e ‘_::4

* Efficiency:

Regularization instead of single-letter formula. But it can estimated by

) 1
—Dy (|| B,,) < D*(A||B) <—D(, |5,

m m

with explicit convergence guarantees,

1 1 1
—D(A,||95,) = —Dy(A,,||B,) <—2(d*+ d)log(m + d)
m

m m

Efficiently approximate /) “'(</||.98) within an additive error by a quantum
relative entropy program of polynomial size. [arXiv: 2502.15659]

20
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] 4
| lim —D (7, ||B,) = D(A||B) |
| n—oo N 3_1

W Explicit finite 7 estimate:

nD (oA || B)~ 0> logn) < D (A,||B,) < nD>(A||B)+

Leading term is regularized, but still provide an explicit estimate for finite n,
making its convergence controllable; a rare case in QIT

Leading term independent of € (strong converse property)

The second order in O(n?> log n) instead of O(\/ﬁ), potential improvement exists
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Key technical tools

Measured relative entropy D, ,(p||o) := sup D(Pp,MHPO_,M)
M

|
Superadditivity Dy (p; ® p,lloy ® 6,) > Dy(p;lloy) + Dy(pslloy) D(pllo) = lim —Dy,(p®"]|c®")

n—oo N

Subadditivity ] T— -

Suppose & @ A, C o, and B, ® B, C B, ‘ | Dy, Sandwiched

Dg (A 5||%B13) < D (A || 9B1) + Dy (5| 5B)) Va > 1 | &

— — —_— - | .
Superadditivity g — — — ‘R D Umegaki 3
| ' g; {
Suppose ()} ® ()}, € (7))} and (%))} ® (B} € (B | || i%
4 | , D,,,, Measured j[g
Dy (A 15|l FB12) 2 Dy o[ 11| B1) + Dy o(A5]|Br) VO < a < 1 | ‘t ’ H
- ] — e ——




Recap: from AEP to generalized guantum AEP

r e e — - e — - I — E— E— I — e -

1
——logp(X,, X5, -, X ) —> H(X) in probability

|
——

I | R § S |

. _ _ _ _ _ .
=L, a——— ———

o o 1 ® ®
| Iim lim =D _(P®"||0%") = D(P|| Q)

e=>0n-o0o N
| e
—_——

1' 1 1 Xn QRQn\ __
ﬁ im lim —D,(p®"[|6®") = D(p|o)

e=>0n—-oo N
. - _ _ - . -
- |
| lim =D (o ||F,) = D(A||RB) R

n—-oo N o

.

AEP

Quantum

/ Generalized



Applications

1. Quantum hypothesis testing between two sets of states
2. Adversarial quantum channel discrimination

3. A relative entropy accumulation theorem

4. Efficient bounds for guantum resource theory

24



Application 1: Quantum hypothesis testing between two sets of states

A tester draws samples from two sets of quantum states,
and performs measurements to determine which set the sample belongs to.

Type-I| error

,ee; X
_ Tester a(d M) := sup Ir[p,(I—M,)]
pn€EL ),
—>| Measurement guess N
L ‘ Type-Il error \\%?’ Worst-case
p(A,, M) .= sup Tr [6,M ]

0,ERB,

As Iin standard hypothesis testing, the tester will make two types of errors:

Type-l error: sample from &, but classified as from &%,
Type-Ill error: sample from 95’”, but classified as from dn.
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Application 1: Quantum hypothesis testing between two sets of states

A tester draws samples from two sets of quantum states,
and performs measurements to determine which set the sample belongs to.

Type-l error

o X
_ Tester a(d M) := sup Ir[p,(I—M,)]
puES,
—>| Measurement guess |
{ ) Type-" error \\%?’ Worst-case
, s
p(A,, M) .= sup Tr [6,M ]

0,ERB,

Goal: Determine the optimal exponent at which the type-Il error probability decays, e.g. COVID-19: healthy
while keeping the type-I error within a fixed threshold & (to control over false positives)  People get a positive test

B |IB,) = inf {H(B,.M,):alcd, M,)< e B || B,) ~ 2

0<M, <I
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Application 1: Quantum hypothesis testing between two sets of states

m —————— ——————— R e —————— S S e e — S R R S e E— S _ﬂ

1
l lim — —log f.(/ ||B,) = DX(A||B) Ve e (0,1) JH
11— 00 n

e — e e e e e e e S —— e e e e S ———————

/ Classical Chernoff-Stein Lemma

\/ Quantum Stein’s Lemma [Hiai, Petz 1991; Ogawa, Nagaoka

Let of, = {p®"} and B, = {6%"} be two singletons.

Generalized Quantum Stein’s Lemma (&7, = {p®"})

Talk by Lami on Tuesday & Talk by Hayashi on Wednesday
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Generalized Quantum Stein’s Lemma (Qi = { p®})

— Two dn‘ferent solut|ons
Ty ‘Trlgger

2010 2021 2023 2024

Brandio and Plenio KF, Gour, Wang Berta, Brandao, Gour, Lami, Hayashi and Yamasaki
Plenio, Regula, Tomamichel
Initial statement Channel Stein’s lemma Lami
Plenty of applications Triggers the finding Formally point out
(Related to of a gap the gap and KF, Fawzi, Fawzi
1k+citations) in the original proof study the consequences (this work) ‘

However, an issue has recently been found in the claimed proof of the generalised quan-
tum Stein’s lemma in [BP10a]. Specifically, after the appearance of the first version of the
preprint [FGW21] that studied a related setting using the methods of [BPP10a], one of us identified
a mistake in [FGW21, Lemma 16], which then led to the discovery that the original result [BP10a,
Lemma II1.9] is incorrect. This means that the main claims of [BP10a], and in particular the gen-
eralised quantum Stein’s lemma introduced therein, are not known to be correct, and the validity
of a number of results that build on those findings is thus directly put into question.

28
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2024
—_———————————>

Hayashi and Yamasaki

Lami

KF, Fawzi, Fawzi

(this work) ‘

of of the generalised quan-
> of the first version of the
[BP10a], one of us identified
at the original result [BP10a,
1], and in particular the gen-
o be correct, and the validity
1t into question.

A.1 A.3 A.5
A1 | A2 | A3 AS | A6
Al | A2 | A3 | A4

Generalized Quantum Stein’s Lemma (&/, = {p©"})

(A.1) Each & is convex and compact;
(A.2) Each &, is permutation-invariant;
A3 A, A, C A, ., forallm,k € N;
(A.5) &/, contains a full-rank state

(A.6) Each &, is closed under partial traces

A.4) (), & (H ), C (A, 1), forallm, k € N,
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Generalized Quantum Stein’s Lemma (&/, = {p©"})

(A.1) Each & is convex and compact;

(A.2) Each &, is permutation-invariant;

2024
. ' A3 A, A, C A, ., forallm,k € N;
Hayashi and Yamasaki A 1 A3 A5
_ (A.5) &f | contains a full-rank state
Lami Al | A2|A3 A5 | A6
(A.6) Each &, is closed under partial traces
KF, Fawzi, Fawzi Al | A2 | A3 | A4 ) ) )
(this work) ‘ (A.4) (ﬂm)+ X (@7/()4_ C (ﬂm+k)+, forall m, k € N;

Our result is incomparable to the previous generalized quantum Stein lemma.
Weaker: assume (A.4) for B,

Stronger: 1. composite null hypothesis &/ , Instead of p®”

2. efficient and controlled approximations of the Stein’s exponent D (/|| %)

(’ solves open problems
in [Brandao, Harrow, Lee, Peres, 2020, TIT] and [Mosonyi, Szilagyi, Weiner, 2022, TIT]
30




Application 1’: Quantum resource theory and its reversibility
a.k.a, second law

" A,
Standard resource manipulation Resource manipulation with partial information
Asymptotic resource nongenerating operations Lack of knowledge of the states
[Brandao and Plenio, 2010] Different copies of the sources

can exhibit correlation in nature

Optimal transformation rate ( RNG ) D (A || F)
r| o > B | =
D>(B||F)




Application 2: adversarial quantum channel discrimination

Operational setting:
A tester is working with an untrusted quantum device that generates a quantum state upon request

Guarantee: either ./ (the bad case) or .Z (the good case)

Q w Request samples
Untrusted Perform measurement
Device @@@@ - Mak
Adversary Tester aKe a guess

32



Application 2: adversarial quantum channel discrimination

Operational setting:
A tester is working with an untrusted quantum device that generates a quantum state upon request

Guarantee: either ./ (the bad case) or .Z (the good case)

Q w Request samples
Untrusted
Perform measurement
Device $@$$ . Mak
Adversary Tester are a guess
Environmental system of the channel How effectively can the tester
Internal memory correlates with the generated samples distinguish between the two cases

Actively misleading the tester to correctly identify the channel while playing against the adversary?

Classical setting refers to [Brandao, Harrow, Lee, Peres, 2020, TIT]
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Application 2: adversarial quantum channel discrimination

Operational setting:

A tester is working with an untrusted quantum device that generates a quantum state upon request

Naop=Trge Uy pg

My_g=Trge Vs pE

Stinespring dilation

Adversary

Al

R1

f U/V
F1l
—

WV

A2

S

R2

u/v

A3

S

R3

u/v

ES

Tester

WV

~

E; environmental systems, R; internal memories, P,/(Q; internal operations by adversary

34

Due to the lack of knowledge of
what the adversary do:

. g/, if device is J/;
« 9B, if deviceis M

Adaptive strategies
by adversary



Application 2: adversarial quantum channel discrimination

Operational setting:

A tester is working with an untrusted quantum device that generates a quantum state upon request

Naop=Trge Uy pg

Stinespring dilation
Adversary )
Bl J

Al

f UN | g
S0

R1

A 4

A2

J

R2

U/N

WV

A3

S

R3

U/Vv E3

Tester

WV

E; environmental systems, R; internal memories, P,/(Q; internal operations by adversary

35

Due to the lack of knowledge of
what the adversary do:

. /) if device is J/;
» 9B, if deviceis M

Non-adaptive strategies
by adversary



Application 2: adversarial quantum channel discrimination

The best performance of the tester playing against the adversary is given by:

1 1
lim — — log f,(</,||%,) = lim —— log f,(</

n— 00 n n—> 00 n 3

|
n

B;) = DN || M)

Adaptive strategies Non-adaptive strategies Minimum output
by adversary by adversary quantum channel divergence

DN || M) = inf DN (p)|M(0)) DI (N||l) := lim —D™(N®"|.r®")

P,0€Y n—oo N

Adaptive strategies offer no advantage over non-adaptive ones
In adversarial guantum channel discrimination.

Good news for the tester!
36



Application 2: adversarial quantum channel discrimination

The best performance of the tester playing against the adversary is given by:

o - e e e — e e e e e e E— ‘]

lim — —log f,(</,||B,) = lim — —log f.(/,||B}) = D™ =(||.40)
n— 00 n n—oco N

e — T - Y = P— e — S — P———— Tw

Key technical tool (chain rule):

DM,a(/V BRI o g(ORA)) 2 DM,a(PRHUR) T Dji\lfa(«/’/ Al 4_ p)

DS,a(/V AeB(pRA)“%AeB(GRA)) > DS,a(PRHUR) + Dmf (N A—>BH%A—>B)

37



Application 3: a relative entropy accumulation theorem

Internal
RO R1 R2 R3
Al A2 A3
................... I e W e e N e
External What is the entropy of the external systems?

How entropy accumulate for sequential operations on a state?
[Dupuis, Fawzi, Renner, 2020, CMP] Find plenty of applications in quantum cryptography

n
Hirax(By-By| Cp.C) i) S D sup HB;| C) 4 () + O(/)
=1 a)Ri_l
How to generalize from conditional entropy to relative entropy?

Open question in [Metger, Fawzi, Sutter, Renner, 2022, FOCS] for D

max ,&
38



Application 3: a relative entropy accumulation theorem

How entropy accumulate for sequential operations on a state?
[Dupuis, Fawzi, Renner, 2020, CMP] Find plenty of applications in quantum cryptography

maX(Bl ‘ Cl' . °Cn)=/’/n°"°°/V1(PRO) < Z SUp H(Bl ‘ Cl)/’/l(a)) -+ 0(\/;) r S—

i=1 “r;_;

How to generalize from conditional entropy to relative entropy?

Recover with a
slightly weaker §
max ,& second order ~

Open question in [Metger, Fawzi, Sutter, Renner, 2022, FOCS] for D

d
4
‘4
R e e e e e ;ﬂ

[Tz, | | #(or,) ) > Z D" (Trg o N || Trg o M) — O(n*?logn) |
' =1 |
- - ]




Application 4: efficient bounds for quantum resource theory

(A.1) Each &, is convex and compact;

(A.2) Each &, is permutation-invariant;
A3 A, QAL C A, . forallm,k e N,
A4) (). Q () C (A, ), forallm, k € N;

If (A.4) is not directly satisfied, we do relaxation!!!

1
Note that D*°(H||A) := lim —D(A || AB,) is efficiently computable

n—-oo N

Improvement (even for the first level of approximation)

» Entanglement cost of quantum states and channels

» Entanglement distillation

. Magic state distillation 10 Refer to arXiv: 2502.15659 for more details



Application 4: efficient bounds for quantum resource theory

Entanglement cost for quantum states and channels

Using the minimum number of Bell states to prepare one copy of a state under LOCC operations

|
Ec1occ(p) = D¥(p|| PPT) := lim —D(p®"||PPT(A" : B"))

n—oo N

Hard to evaluate in general

SDP lower bounds [Wang, Duan, 2017, PRL; Wang, Duan, 2017, PRA; Wang, Jing, Zhu, 2023]

Eciocc(p) 2 D¥(p|| PPT) > max {EWD,1(,0), Ewp 2(p), EWJz(P)

Eciocc(p) = D®(p|| PPT) > D=(p|| PPT,) = D,(p|| PPT,) > (*)

F:‘ e e e e e e e e i e e e e e e e e e e e e I i e e e e e e e e e e e S ——

Improved bounds and still efficiently computable via convex programs

*Similar result holds for entanglement cost of quantum channels



Application 4: efficient bounds for quantum resource theory

Random states withd4, = dg = 3

Entanglement cost for quantum states and channels

(a) Isotropic state py , with d = 3 (b) Werner state pyy,, with d = 3 0-81
' ‘ 0.8
1.6 || —— D,(p||PPT5) (this work) —— D, (p||PPT53) (this work)
— Ewyz — Ewiz 0.6
1.2 — ELR 0.6 [| — ELR ~ _
- == D®°(p||PPT) (analytical) - == D°°(p||[PPT) (analytical) EN
Ay
= 041}
08| 0.4 %
Q
0.4 | 0.2 0.2 |
0 0
| |
0 02 04 06 08 1 0 02 04 06 08 1 L
Eciocc(p) 2 Er(p) SDP lower bound by [Lami, Regula, 2023, NP] 0 0.2 0.4 0.6 0.8

Quantitative improvement, even at the first level

Match the analytical result for isotropic and Werner states Outperform [Lami, Regula, 2023, NP] in most random cases



Application 4: efficient bounds for quantum resource theory

Entanglement distillation

The maximum number of Bell states that can be extracted from the given state with asymptotically vanishing
error under the asymptotically non-entanglement generating operations (ANE) [Brandao, Plenio, 2010]

|
Ep ane(Pap) = D™ (pypll SEP) := lim —D(pf’”” SP(A” : B"))

n—oo 1N B

Hard to evaluate in general Separable states

As D(p|| SEP) is minimization problem, any feasible solution gives an upper bound

e e e . e e - e e I:ﬁ

Can be efficiently computed

D> (pagll SEP) 2 D= (p gl Rains)

-4 Operational meaning: distillable entanglement
~under Rains-preserving operations

Rains(A : B) :={6>0: |lo"s|, < 1} [Regula, KF, Wang, Gu, 2019, NJP]

e — R ———————— — ———— E—

[Rains, 2001; Audenaert et.al 2002]



Application 4: efficient bounds for quantum resource theory

Magic state distillation

Extract as many copies of the target magic state as possible using stabilizer operations (STAB)

Thauma measure: [Wang, Wilde, Su, 2020, PRL]

|

@ CONstant

My san(p) < DpIT )T

Hard to evaluate in general &

Regularized Thauma measure, but remains efficiently computable W =102 0 |lofly; =1}

- Sub-normalized states
p with non-positive mana

| Mp sta(p) < D= (pl|77)e(T) < D(p|[#)e(T)
R —




Summary

) (AN B,) = D=(A||AB) |

e e e e e e i e e e e ‘J

Generality/efficiency/finite n estimate Technical tools (superadditivity & chain rule):

(A.1) Each & is convex and compact; Dy (A 51| B12) = Dy (| B)) + Dy (]| B)

(A.2) Each &, is permutation-invariant; -
Dy o\ NV (PRI 4. 50 4)) = Dy o prllog) + Dyy o N s gl A 4 )
A3 A @, Cd, . foralmkeN: M,a\"" A—B\PRA A—B\ORA M,a\PRIIOR Ma\”"" A—BICA-B

(A.4) (), & (), C (A, 1), forallm, k € N;
As AEP is in the heart of information theory, we expect further studies and applications.

Already been used in [2502.02563] by Argand and Tan for quantum cryptography
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| am hiring

One Brand, Two Campuses

HHE T XKEF

The Chinese University of Hong Kong

The Chinese University of Hong Kong, Shenzhen

Looking for postdocs, PhDs, research assistants...

Quantum Information Theory, Quantum Computation 1 j 1l wie--.f 1] Sl

kunfang.info Edkunfang@cuhk.edu.cn

46


http://kunfang.info
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Thanks for your attention!

arXiv: 2411.04035 & 2502.15659
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